
Improving the Space Efficiency of Dynamic
Memory Allocation in an Experimental
Capability-Based Operating System

Szymon Duchniewicz1

MEng Computer Science

Supervisor: Prof. Brad Karp

Submission date: 24th May 2024

1Disclaimer: This report is submitted as part requirement for the MEng Degree in Computer
Science at UCL. It is substantially the result of my own work except where explicitly indicated
in the text. The report may be freely copied and distributed provided the source is explicitly
acknowledged.

Abstract

Efficient management and tracking of memory resources pose a significant challenge for

computer systems due to diverse program memory requirements and system constraints.

This thesis aims to improve the memory management system of CantripOS, a new ex-

perimental operating system designed for cost-constrained, memory-limited edge compute

nodes, built atop the secure, formally verified seL4 microkernel. We investigate the space

efficiency and performance of CantripOS’s memory management system, hypothesising

significant memory fragmentation due to the system’s global rather than per-region mem-

ory tracking. The primary goals of this work are to improve memory bookkeeping in

CantripOS, decrease failed allocation system calls, and reduce memory fragmentation.

We evaluate two different memory allocators: next-fit and best-fit, and show that our

improvements eliminate failed allocation system calls and substantially decrease memory

fragmentation for various synthetic and representative workloads.

Contents

1 Introduction 3

1.1 Improvement of Memory Management in CantripOS 4

1.2 Evaluation of Memory Management in CantripOS 5

1.3 Thesis Goals . 5

2 Background & Related Work 7

2.1 Dynamic Storage Allocation . 7

2.1.1 Allocator Mechanisms . 8

2.1.2 Memory Fragmentation . 13

2.2 Physical Memory Fragmentation in seL4 and CantripOS 14

2.2.1 Watermarking Constraint Fragmentation 17

2.2.2 Alignment Constraint Fragmentation 17

2.3 Background Information: Systems in Play 18

2.3.1 CantripOS . 19

2.3.2 seL4 . 21

3 Design and Implementation 24

3.1 Original CantripOS Memory Management System 24

3.1.1 Original CantripOS Memory Allocator 26

3.1.2 Limitations of Memory Management in seL4/CantripOS 26

3.2 Our Initial Design: Improving Memory Manager via MDB Traversal 28

3.2.1 Goals . 28

3.2.2 What to Return From the Kernel to Improve Memory Bookkeeping? 28

3.2.3 Kernel Modifications . 30

3.2.4 User Space Modifications . 34

3.3 Our Improved Design for the CantripOS Memory Manager 35

3.3.1 Goals . 36

3.3.2 What to Return From the Kernel to Improve Memory Bookkeeping? 36

3.3.3 Kernel Modifications . 36

3.3.4 User space Modifications . 38

3.3.5 Validation of the Designs’ Correctness 38

3.4 Implementing the Best-Fit Strategy for Memory Allocation 39

3.5 Infrastructure for Performance Analysis . 40

1

4 Performance Evaluation 41

4.1 Experiments . 41

4.1.1 Measured Metrics . 42

4.1.2 Synthetic Workloads . 42

4.1.3 Representative Workloads . 43

4.1.4 Expected Study Outcomes . 48

4.2 Results . 49

4.2.1 Synthetic Workloads – Random with Uniform Distribution 49

4.2.2 Representative Workloads – Standalone Application Traces 51

4.2.3 Representative Workloads – Sequential Application Trace Interleaving 55

4.2.4 Allocation Latency Evaluation . 59

5 Conclusions & Future Work 61

5.1 Conclusions . 61

5.2 Future Work . 62

A Code of the Modified CantripOS and seL4 System 67

A.1 Code for all repositories used in the project 67

B Memory System Redesign: Fix for dirty untyped object splitting 68

B.1 Description and bugfix of the dirty untyped object splitting bug 68

C Memory System Redesign: Neighbour Traversal Inefficiency 69

C.1 Empirical confirmation of neighbour traversal inefficiency 69

D Additional synthetic workload results 70

D.1 Memory statistic for 32 and 64 percentage chance for deallocation runs. . . 70

E Project Plan 73

F Interim Report 77

1

Acknowledgments

First and foremost, I would like to thank Professor Brad Karp, for his immense support

and guidance. His expertise in conducting research and knowledge of computer systems

proved to be invaluable at so many steps of the project. I am deeply grateful for being

able to learn from him.

I would also like to thank Sam Leffler for building such an exciting system and sharing

his knowledge on the inner-workings of CantripOS and seL4.

Further, I would like to thank Kent McLeod for explaining why the seL4 modifications

proposed in this design have widely different impact on the system’s performance.

Finally, I would like to thank my family for their support, especially my brothers Jakub

and Micha l, as well as my friends – Marek Masiak and Andrzej Szablewski, for listening

to my many monologues about this project and providing constructive feedback.

2

Chapter 1

Introduction

Efficient management and tracking of memory resources is a complex challenge for all

computer systems with no single universal solution, as programs exhibit a wide variety

of memory requirements and systems impose various constraints. The centrepiece system

in this work – CantripOS, is a new experimental operating system to be used in cost-

constrained, memory-limited edge compute nodes. Using the limited memory efficiently is

therefore essential to enabling successful execution of applications. As CantripOS aims to

be a secure system but also provide a familiar interface for app developers, it is built on

top of a secure, formally verified microkernel: seL4 [1]. Developing applications directly

on seL4 is not straightforward due to certain complexities of the system, further explored

in Section 2.3.2, hence CantripOS provides additional interfaces, such as a memory man-

agement interface, for use by developers.

As in any modern system, memory is dynamically managed in CantripOS, meaning

the amount of memory required for running the system or its applications changes while

the system is in operation. Dynamic memory allocation is orchestrated by an allocator –

its main goals are reserving and freeing variable-size blocks of memory from larger regions

of available memory, at the same time achieving minimal wastage of space and latency of

requests.

The wasted space produced by an allocator is a result of the central problem of memory

allocation – fragmentation. Fragmentation is categorised as external or internal [2].

External fragmentation arises when there are free blocks of memory available for use

by the allocator, but cannot be used to satisfy a particular memory allocation request. For

example, the requested allocation size exceeds all possible contiguous regions of memory

in the free blocks.

Internal fragmentation arises when the allocator assigns a big-enough free block to

satisfy a memory allocation request, but the block is larger than needed.

Space efficiency of dynamic memory allocation in CantripOS has not previously been

investigated. In this work, we aim to explore this and other aspects of memory man-

agement performance, as there is reason to speculate that it suffers from severe memory

fragmentation we also aim to improve it. This speculation is based on the fact that track-

ing memory usage in CantripOS is limited to only a global statistic, rather than an exact

3

per memory region statistic, leading to CantripOS “guessing” when making an allocation

(Section 3.1.2 describes this in more detail). This limitation is due to the system being

divided into 2 domains: the seL4 kernel domain, which tracks all memory usage and the

domain of CantripOS system components, which interacts with the kernel domain via

an interface similar to RPC calls1. It is not straightforward to share this exact memory

bookkeeping information from the seL4 domain to the broader CantripOS domain.

All available memory in CantripOS is divided into a fixed number of regions, also re-

ferred to as slabs. These regions are determined by the underlying seL4 microkernel at boot

time. Unlike in popular monolithic kernel-based operating systems such as GNU/Linux,

in seL4 memory allocation for kernel objects is managed by a designated user-level appli-

cation, rather than the kernel [4].

For CantripOS, this user-level application is one of the components from which the

system is constructed, called the MemoryManager.

When CantripOS allocates memory, it does so using a next fit allocator mechanism –

“consulting” each slab it is managing until a slab big enough to fit the requested object

is found. This allocation mechanism always resumes iterating over all free slabs from

the slab on which a previous allocation succeeded, the mechanism is described in more

detail in Section 2.1.1. However, since the domain of CantripOS does not know how much

memory is allocated and free in each individual slab (only the total of all slabs), in order

to allocate a memory object it actually makes an allocation seL4 system call for each

“consulted” slab. If the system call request fails, then CantripOS is aware that this slab

is too small or too full to satisfy the allocation, and tries the next slab. As a result, each

allocation request can result in multiple system calls, up to the total number of slabs in

CantripOS – an undesirable property of any operating system.

1.1 Improvement of Memory Management in CantripOS

Our aim is to evaluate the existing memory management system and improve it, by de-

creasing memory fragmentation for current and future applications of CantripOS and

decreasing the latency of allocation requests. Improving the CantripOS domain’s book-

keeping of allocated memory to track usage at a per-slab granularity should eliminate the

need to make more than one system call request for each allocation, potentially decreasing

the latency of memory allocation. There are other benefits of such accurate bookkeeping:

CantripOS application developers might want to know specific app’s memory usage, and

the CantripOS system developers would be able to assess the efficiency of general system

allocator. Being able to evaluate the existing CantripOS memory allocator allows us to

implement different allocator mechanisms and compare which one leads to smaller frag-

menting of memory. In this work, we implement the best fit allocator and compare against

the existing next fit allocator, both are described in detail in Section 2.1.1.

1More specifically, such cross-domain communication is handled by the inter-process communication
mechanism: IPC. It can be thought of as an RPC mechanism, but instead of going across networks, it
goes across protection-domain boundaries [3].

4

1.2 Evaluation of Memory Management in CantripOS

After extending the CantripOS system’s memory bookkeeping to track exact memory

usage per each memory region and after implementing the best fit allocator, we assess

both the performance of both the original and the new allocator. Prior research tackles the

performance evaluation of dynamic memory allocation with various approaches: formally

bounding time and space complexity of allocators, collecting fragmentation metrics using

synthetically generated memory workloads or using memory traces of real applications [5].

In order to explore the range of behaviours of both memory allocators, we use synthetic

workloads, as described in Section 4.1.2. Since CantripOS is a fresh and experimental

system and there are no complex applications which represent the target use cases of the

system, we instead use the available sample applications to investigate the behaviour of

both memory allocators under real workloads, as described in Section 4.1.3.

To perform the evaluation, we extend CantripOS with infrastructure for generating and

running synthetic traces from its debug console, along with Robot Framework scripts for

reproducible experiment scheduling. Further, we add infrastructure for tracing all memory

requests in the CantripOS system to evaluate system behaviour when real applications are

running, without the need to actually run those applications. This allows us to manipulate

these traces and derive new workloads from them.

As the elements of CantripOS project are split across multiple repositories, source code

for all experiments, modifications, and improvements referenced in this work as split across

multiple repositories and branches, all of which are explicitly listed in Appendix A.1.

1.3 Thesis Goals

We encapsulate the main goals of this work as:

Improving bookkeeping of memory in the CantripOS domain. Extending the

tracked memory usage statistic to per-slab granularity in the user space of CantripOS will

allow the system’s developers to assess the performance of dynamic memory allocation

in CantripOS and compare different memory allocator mechanisms. It is therefore a

foundational improvement which would act as a catalyst for subsequent enhancements of

the memory management system.

Eliminating failed allocation system calls when allocating memory in Cantri-

pOS. With more detailed bookkeeping information in CantripOS, its memory allocator

can be modified so it determines when the system is out of memory or which memory slab

is big enough to satisfy an incoming memory request, instead of relying on failure/success

of seL4 allocation system calls. Achieving this goal would potentially decrease the latency

of memory allocation requests in CantripOS.

Reducing memory fragmentation of the memory allocator of CantripOS.

The more detailed bookkeeping information in CantripOS, allows for precise measurement

of memory fragmentation. We can therefore implement a different memory allocator mech-

anism, such as the best fit mechanism, and empirically verify whether using it successfully

5

reduces the fragmenting of memory in CantripOS.

6

Chapter 2

Background & Related Work

In this chapter, we describe the background information necessary in order to address

the goals outlined in Section 1.3. We also summarise related work reviewing different

techniques in dynamic memory allocation.

2.1 Dynamic Storage Allocation

One of the common factors of all computer systems is the use of memory to save input,

intermediate steps or results of computational tasks. Each process running on a computer

has two options for using the system’s memory: statically – defining the memory required

at compile time, or dynamically – requesting memory during runtime. Nowadays, it is

common for processes to use both of these options.

For all kinds of systems, dynamic memory allocation is orchestrated by an allocator

algorithm. For simplicity, a program implementing such an algorithm we will also refer to

as an allocator. The main goals of an allocator are to reserve and free variable-size blocks

of memory from a larger storage area, where these blocks should consist of consecutive

memory locations [6]. Additionally, such algorithms should yield minimal wastage of space

and latency of the requests [5].

When an allocator receives a request for a block of memory for which a perfectly sized

free block is not found, depending on the allocator mechanism, either a larger block is

split to match the size of the request,1 or the size of the request is rounded up, and a

larger block is allocated.

In the first scenario, after splitting, the remaining free memory is kept in the free list

(or whatever data structure is used to represent free blocks) as a smaller block. The other,

new, block of free memory (now matching in size to the request) is allocated and handed

off to the requestor. However, if the oversized block was close to a perfect fit, the remaining

free block might be too small to be effectively useful, leading to external fragmentation

(Section 2.1.2, Figure 2.3) [6]. After the block is freed, if the original remaining block (or

a neighbouring block) are also free, these blocks can be coalesced and added back as a

1This method is used when allocating objects in CantripOS, further detailed in Section 2.3.1.

7

single block to the free block data structure. Different allocators may perform coalescing

differently.

In the second scenario, the full free block is removed (or marked reserved, depending

on allocator method) from the free block data structure. It is handed off to the requestor,

where the remaining free memory that the requestor did not need is wasted as internal

fragmentation (Section 2.1.2, Figure 2.4). After the block is freed, it is added in its entirety

(including the “fragmented” memory) back to the free block data structure. Depending

on the allocator mechanism, the allocator can attempt to coalesce it with its neighbours.

2.1.1 Allocator Mechanisms

There are many widely used algorithms for dynamic storage allocation, we now explore

the conventional taxonomy of allocators introduced by Wilson et al. [5], closely related to

the one presented in Standish’s book [7]. The majority of allocators can be divided into

the following mechanism categories:

• Sequential Fit – algorithms such as first fit, next fit, best fit, worst fit;

• Segregated Free List – algorithms such as simple segregated storage, segregated fits;

• Buddy System – algorithms such as binary buddies, weighted buddies, Fibonacci

buddies, double buddies;

• Indexed Fit – algorithms using more sophisticated indexing data structures to fit

desired allocation policy; and

• Bitmapped Fit – specific kind of indexed fits.

Over the years, there have been many studies of different allocators, under both syn-

thetic workloads and workloads representative of real applications. These studies led to

sometimes contradictory results, showing that certain allocators significantly outperform

others. It seems that certain allocators simply perform much better in specific scenarios,

and there is not a single universal allocator that would perfectly fit all use cases. As the

operating system considered in this work (CantripOS, Section 2.3.1) already uses a varia-

tion of an allocator with a sequential fit mechanism and the improvement we propose also

uses an allocator in that category, we describe sequential fit in more detail than the other

four above mechanisms. In the interest of brevity, we leave the description of indexed and

bitmapped fit allocator mechanisms to [5].

Sequential Fit

Sequential fit is one of the simplest, oldest allocation mechanisms. It relies on using a

single list of free memory blocks. These free lists are often doubly linked, and a boundary

tag technique is used [6]. This allows for constant-time coalescing of contiguous free blocks.

On an allocation request, the free list is traversed in order to identify a free block

matching the allocation policy enforced by the allocator. The worst case run time for

8

most sequential fit allocators therefore scales linearly with the number of free blocks. As

described in Section 2.3.1, CantripOS has a fixed number of free blocks initialised at boot

time, which are not split or coalesced, which makes tracking of them much simpler, and

limits the maximum traversal length. In a system that splits and coalesces, you could

wind up with blocks that are only a few bytes long, so number of entities in the list is

going to be in the order of memory size divided by a small integer, whereas for CantripOS

the number of slabs depends solely on total system memory, and does not increase during

run time. Below are some commonly used sequential fit allocator mechanisms:

First fit. Searches the free list from the beginning, and chooses the first free block that

is big enough to fit the requested allocation size. If the allocator iterates over the entire

list without finding a suitable free block, either a new page is requested or the system is

out of memory and the failure needs to be appropriately handled (e.g. it can crash). If a

sufficiently large free block is found, it can either be split or allocated fully, as described

in the beginning of Section 2.1. Typically, there is a threshold value of k words defined,

and if the remainder of a split would result in less than k words, the block is rounded up

and allocated fully, avoiding external but introducing internal fragmentation [6].

An example allocation of a 3 word block is shown in Figure 2.1, where the threshold

value k is set to 0. The allocator starts at the beginning of the free list, but the first

free block is too small (1 < 3), so it advances to the next one. The second block is large

enough to fit the request (4 ≥ 3), so it is split into two smaller blocks: a 3 word block and

1 word block. The larger block is marked as allocated and a pointer to it is returned to

the requestor, and the smaller, remaining 1-word free block is kept in the free list.

#define SIZ seL4_Word

p1 = malloc(3*SIZ)

Next Fit

First Fit

Best Fit

0 16*SIZ-1

Next Fit roving pointer

Figure 2.1: Sequential mechanisms’ allocation, visualised for a 3-word allocation request.
The first row shows the initial state of a memory region, along with the roving pointer
position for next fit. Purple, green and blue squares indicate the position where first, next
or best fit allocators would allocate those 3 words. White squares indicate contiguous, free
blocks of memory, red squares are reserved/allocated blocks. Diagram inspired by [8].

Next fit. A variation of first fit, using a roving pointer for allocation [6]. The roving

pointer tracks the address/index of the last free block from which an allocation succeeded,

originally starting at the beginning of the list. Consecutive allocations begin their search

for a big enough free block from the block marked by the roving pointer, wrapping back

around to the start of the list if the end is reached. Similarly to first fit, when the entire

9

list is traversed without finding a suitable free block (roving pointer arrives at its starting

location), either a new page is requested or the system is out of memory and needs to

handle the failure state accordingly (e.g. crash).

An example next fit allocation of a 3-word block is shown in Figure 2.1, with the roving

pointer (black arrowhead) located on the 3rd free block. This block is large enough to fit

3 words (5 ≥ 3), so the allocator does not advance further. The 5-word free block is split

into a 3-word block and a 2-word block. The larger free block is marked as allocated and

a pointer to it returned to the requestor, and the smaller, remainder 2 word free block is

kept in the free list. The roving pointer is adjusted to point to the now smaller, 2 word

free block.

Although next fit intuitively sounds like an optimisation of first fit, empirical evidence

of both synthetic and real application traces have shown that it causes more fragmentation

than first fit and best fit methods. Johnstone and Wilson speculated that the better

performance of first fit over next fit is due to the former method preferentially reusing

blocks at one end of memory, allowing more time for the blocks on the other end of

memory to coalesce. This reduces the amount of “holes” in memory. In the latter method

however, this theme is much weaker [9].

Best fit. An allocator implementing the best fit mechanism, on receiving an allocation

request, searches through the entire free list, in order to identify a free block that would

result in the least “left over” memory if it was chosen for allocation. This “left over”

memory could be either as a result of splitting, or the allocator could take into the account

the amount of memory that would be wasted if the requested size was rounded up to the

closest fit. The potential for best fit to leave small, unusable memory blocks spread around

the memory map was recognised by Knuth [6], but Wilson et al. state that this generally

does not seem to be a serious problem both for real and synthetic workloads [5].

An example allocation of a 3-word block is shown in Figure 2.1. The allocator starts

at the beginning of the list, checking if the allocation would fit in the free block and how

much memory would be “left over”. The first free block is too small (1 < 3), the second

and third would result in 1 (4− 3) and 2 (5− 3) “left over” memory words after splitting.

The fourth and final block is a perfect fit, so the allocator marks it as allocated, returns

a pointer to it to the requestor and removes it from the free list.

Further empirical evidence has shown that both best fit and address-ordered first fit

do quite well in both random traces and real applications in terms of memory fragmen-

tation [9], with both strategies making almost identical short-term decisions: if either

allocator was used for a longer period of time, and then the other allocator was used for

the next allocation, placement decisions were rarely different [10]. Wilson et al. speculate,

that this shows a fundamental similarity between these two allocator algorithms, captured

by an “open space preservation heuristic”: “try not to cut into relatively large unspoiled

areas” [5].

In the specific case of CantripOS however, we suspect that these similarities might not

hold, given the specific limitations imposed on splitting and coalescing of blocks (explained

in Section 2.3.2), resulting in frequent fragmentation of memory, as detailed in Section 2.2.

10

Worst cases for first, next and best fit are presented in Section 2.1.2, however, there is

evidence suggesting these bounds are only very rarely reached in practice [9].

Segregated Free List

Rather than using a single list of free memory regions, the segregated free lists approach

uses an array of free lists, each containing blocks of a specific size. On an allocation

request, a block from a list containing matching sized blocks of memory is reserved and

removed from the list. On deallocation, this block is added back to the corresponding

free list. Typically, these free lists use a fixed number of size classes, and a satisfactory

class match for an allocation request is a class which has an equal or slightly greater block

size than the request, where no smaller class exists that could otherwise fit the requested

block. A common class scheme is to use exponentially sized classes: e.g., 4 words, 8 words,

16 words, 2k words.

Simple segregated storage. The simplest allocator using this policy, it never splits larger

free blocks when a list of with a class of smaller sized blocks is empty. Instead, when the

allocator is asked for a block of a size for which the free list of an appropriate size class

is empty, it requests more memory from the underlying operating system. A kernel-level

allocator, which manages all physical memory, simply chooses a yet-unused page. Then

it splits the page into blocks of the required size class and adds them to the appropriate

free list. This allocator is fast, but subject to potentially severe fragmentation.

Segregated fits. The main difference between a simple segregated storage allocator and

allocators in this category is that on an allocation request for which no free block is

found in the appropriate list, the allocator algorithm tries to find a larger block and split

it. However, if this search fails, a new page is requested from the underlying operating

system and split accordingly. Additionally, some algorithms in this category allow for free

lists of blocks with varying sizes (up to some class size). This allows for a more hybrid

approach between sequential fit and segregated free list mechanisms, e.g., employing a

first fit or a next fit algorithm to look for a properly sized block in the smaller sized free

lists.

Buddy System

The core principle of a buddy system is splitting the entire available memory in two large

regions (called “buddies”), and each of those areas are further broken down into smaller

and smaller regions.

It is essentially a special case of a segregated free list, and more precisely of a segregated

fit with a specific constraint on splitting and coalescing. A block can only be coalesced

with its “buddy” – the other region that resulted from splitting the current block’s parent.

A variation of this allocator mechanism – the binary buddy system, is used in the Linux

kernel for physical page allocation [11]. It is an especially good choice for physical memory

allocation, as physical memory is accessed at page granularity, so it never produces internal

fragmentation (it is downstream allocators, which manipulate virtual memory mapped to

11

these pages that can result in their underutilisation).

Binary buddy system. As discussed by Knuth [6], this design was first used by Markowitz

in the Simscript system and independently discovered by Knowlton [12]. It is the simplest

variation of a buddy system: all buddy sizes are powers of two, and each buddy is split

exactly into two equal blocks. An example of a 4 KiB memory region after some allocations

is shown in Figure 2.2. The binary buddy system results in very easy to compute binary

addressing: for a block of size 2k, one of the buddies will have a 0 at the k + 1st least

significant bit, while the other will have a 1. It does, however, suffer from potentially high

internal fragmentation (reported as about 28% [13]), as each allocation request needs to

be rounded up to the nearest (higher) power of two.

All available memory

211

210

29

28

212

Block Size 0 212 -1

Figure 2.2: Memory map obtained with the binary buddy system. The column on the left
shows the sizes of blocks at specific levels (in bytes): free (green), allocated (red), split
(grey, blue). When both buddies at a level are freed, there are coalesced into the split
(grey) block one level higher, at the same address.

Fibonacci buddies. As the name suggests, the main difference between this method and

binary buddies is that it uses block sizes from the Fibonacci sequence [14] (or a Fibonacci-

like sequence [15, 13]). This means, however, that after splitting, the resulting two buddy

blocks are of different sizes, meaning that consecutive allocation requests of the same sizes

will require additional block splitting. Empirical evidence using synthetic traces shows

that this variation of a buddy system results in lower memory fragmentation than binary

buddies for certain workloads [14, 13].

Storage (or memory), is always limited by the boundary of physical size and capacity

of the electronic component (e.g. RAM, Flash storage, SSD). However, it is possible for a

program to fail for lack of usable memory long before all the system’s memory is used (or

allocated), due to fragmentation.

12

2.1.2 Memory Fragmentation

Dynamically allocated memory is used by all sorts of applications, ranging from operat-

ing systems to smaller processes managed by OSes. Thus, it is required for allocators

to serve requests for memory blocks of varying sizes, lifetimes (duration for which the

reserved block is in use) and inter-arrival times [7]. It is well documented that there is

no single allocator mechanism that performs optimally in all of the above described sce-

narios. Moreover, prior research proves that for any allocator mechanism, an adversarial

workload can be constructed in such a manner to cause severe fragmentation [16, 17]. In

his work, Robson [17] has shown that considering a dynamic allocation system with max-

imum size of a block of n words and total amount of memory allocated at any time M ,

the memory size necessary to overcome the effect of fragmentation lies between 1
2Mlog2n

and 0.84Mlog2n, for an optimal strategy. In fact, the worst-case upper bounds for the

amount of memory required have been identified for some commonly implemented alloca-

tion strategies described in Section 2.1.1. For the buddy allocator mechanism [12], Knuth

has shown about 2Mlog2n words are sufficient. Robson further has shown that this bound

is Mlog2n for first fit and Mn words for best fit [18]. However, Shore [19] showed that

both first fit and best fit deal pretty well under synthetic, random workloads2 – notably,

first fit outperforms best fit for exponential distributions of allocation sizes, and best fit

outperforms first fit for normal and uniform distributions.

The term memory fragmentation encapsulates the phenomenon of decreasing storage

potential utilisation due to fragmenting (or splintering) of memory regions into many

smaller areas of varying size, some of which are reserved (allocated) and unavailable for

use. Fragmentation normally occurs as a side effect of using dynamic memory allocation,

when memory blocks are allocated with various sizes and lifetimes. It can be categorised

into two general cases: external or internal fragmentation [2].

External fragmentation occurs when there are available free blocks of memory that

can’t be used to satisfy an allocation request. For example, there might be no contiguous

regions of memory that can satisfy a particular request, even though the total free memory

is larger than the requested value. Or, this could be due to the allocator being unable to

split larger blocks of memory into smaller ones (or not coalescing contiguous, free blocks

of memory). An example sequence of allocation and deallocation requests handled using

a first fit allocator mechanism, leading to external fragmentation, is shown in Figure 2.3.

Allocations are single-word aligned. Allocation requests p1, p2 and p3 along with the free

request succeed, but the following request for a 6-word block fails. There are a total of

6 free words available, in this region, but spread across 2 blocks, so it is not possible to

allocate a contiguous 6-word memory region.

Internal fragmentation occurs when an allocator allocates more memory for a block

than is needed, wasting the remainder. This normally occurs due to padding for alignment

purposes, overhead of maintaining heap data structures (e.g. boundary tags [6]) or as a

2Wilson et al.[5] do point out that these workloads are insufficient to determine performance of allocator
mechanisms. More detail in Section 4.1.2.

13

#define SIZ seL4_Word

p1 = malloc(4*SIZ)

p3 = malloc(6*SIZ)

p2 = malloc(5*SIZ)

0 16*SIZ-1

free(p2)

p4 = malloc(6*SIZ) Out of memory!

Figure 2.3: Series of allocation and deallocation requests, leading to external fragmenta-
tion. Diagram inspired by [8].

method for battling external fragmentation, by aligning blocks to specific sizes (Figure

2.4) [8, 5].

Requested Block Size

Internal Fragmentation Internal Fragmentation

Allocated Block

Figure 2.4: Memory lost due to internal fragmentation (gray areas) when allocated block
is larger than the requested memory (blue area).

2.2 Physical Memory Fragmentation in seL4 and CantripOS

We now discuss how for dynamic memory allocation, apart from fragmentation of virtual

memory, physical memory fragmentation is a strongly limiting factor in CantripOS. To

understand how this problem emerges, it is informative to review why it is not so prevalent

in a different commonly used operating system – the Linux kernel. We also highlight the

distinguishing features of seL4 that make the physical memory fragmentation problem

relevant. As the Linux kernel is a fast evolving software ecosystem, the reader should be

aware that the following description reflects the state of kernel version 6.8.9.

Physical memory allocation in the Linux kernel. Physical page allocation is mainly handled

by a binary buddy allocator in the Linux kernel [11], which always allocates memory at a

fixed granularity of 1 page – meaning objects whose sizes are not multiples of the page size

are not allocated. This by itself removes internal fragmentation at this level of allocation

– each request is matched exactly, and internal fragmentation is introduced further down

the allocation chain. Allocation of large, contiguous regions of physical pages is also fairly

limited, as continuity of memory can be satisfied by allocating discontiguous physical

14

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/?h=v6.8.9

pages, made contiguous in virtual memory. This in turn means that there is limited

external fragmentation of physical memory, in the sense that most requests for continuous

memory can be satisfied by breaking them up into discontiguous physical pages.

Virtually contiguous memory allocation in Linux kernel. When dealing with large alloca-

tions, discontiguous memory physical pages are allocated using the binary buddy allocator

and made contiguous in virtual memory. This is necessary because large, contiguous allo-

cations using the buddy allocator are often hindered by external fragmentation [11]. The

vmalloc() function is part of the API for non-contiguous memory allocation. One of its

uses is to allocate pages for process’ virtual memory. A diagram showing how a process

(Process A) calling vmalloc() uses the buddy allocator and maps a physical page to vir-

tual memory is visible in Figure 2.5. The diagram also illustrates a different process –

Process B. It shows that such a virtual page mapping is not made directly to the process’

page table, but is only mapped there on a page fault (when Process B tries to access that

memory).

Figure 2.5: Relationship of vmalloc() using the physical page buddy allocator to map
physically discontiguous pages to virtually contiguous. Figure source [11].

Kernel object allocation in Linux kernel. For allocating kernel objects (such as page tables,

page table entries), individual physical pages are again allocated using the buddy allocator

and a slub allocator [20] is used to allocate and manage individual objects. The slub

allocator is an improvement to Bonwick’s original Slab allocator [11, 21, 22]. Eliding

detail in the interest of brevity, the main goals of slab (and slub) allocators are: using small

15

blocks of memory to minimise internal fragmentation that would have been introduced by

using a buddy system, caching objects that are frequently used to minimise time spent

on their allocation and better utilisation of hardware caches by aligning objects to the L1

and L2 caches [11].

Considering the above, when allocating memory for a process, any additional kernel

objects that are allocated (e.g., page tables for virtual memory) are allocated using differ-

ent allocator mechanisms and are not mixed in the same physical pages. The immediate

result is that these allocations do not cause internal fragmentation when objects of varying

sizes are used, since they reside on separate pages. Further, when a process exits, all of

its memory can be immediately reused by a subsequent process.

CantripOS behaves quite differently for three reasons:

1. seL4 allows allocation of sub-page size objects in physical memory;

2. seL4 enforces object-size address alignment; and

3. seL4 enforces a watermarking (windowing) mechanism of untyped objects.

Allocation of sub-page-size objects in physical memory. In seL4, direct manipulation of

physical memory allows for kernel objects to be allocated contiguously with user-space

objects. This is safe (and proved to be safe [23, 24]), as accessing memory objects in seL4

is finely controlled by capabilities (described in Section 2.3.2). Different kernel objects

can have different sizes and user-space objects are always multiples of a single page (for

32-bit RISC-V, a page is 4 KiB). Together with seL4’s requirement of object-size address

alignment,3 these constraints dictate that consecutive allocations of objects with varying

sizes introduce internal fragmentation in physical memory (demonstrated in an example

request sequence in Figure 2.7).

Watermarking (windowing) mechanism of untyped objects. When the last reference to a

memory-backed object is deleted in seL4, memory might not yet be freed for reuse to

the memory region that held it. For each free region, the kernel keeps a watermark (also

referred to as window edge pointer or freeIndex in seL4 source code) that records what

portion of the region has been allocated. In seL4 terminology, free memory regions are

also referred to as untyped regions and objects which hold this free memory are called

untyped objects. On future object allocation requests, one of two things happens. If there

are any objects still allocated in that untyped region, the watermark level is aligned to the

new object size, a new object is allocated and the watermark level increases. If all objects

previously allocated in that region are deleted, the kernel resets the watermark and starts

allocating from the beginning of the region once more [25, Section 2.4.1].

This means that any internal fragmentation produced by object-size address alignment

cannot be reused unless the freeIndex (watermark) is reset. Furthermore, any freed

objects do not result in free memory until all objects in an untyped region are also removed.

3This is not documented in the seL4 reference manual [25], but the alignment is applied during allocation
(retyping) of memory in the seL4 kernel.

16

Therefore, when allocating two or more threads4 in a single untyped region, after one of

the threads exits, the resulting freed memory cannot be used until all threads allocated in

that region exit. This is not the case for the Linux kernel: as soon as a process exits, its

memory can be reused for another process.

From the above, we conclude that physical memory fragmentation has significantly

larger impact on CantripOS (and seL4) system performance than for the Linux kernel.

Based on these restrictions, we define two additional subtypes of fragmentation for the

purposes of this thesis: watermarking constraint fragmentation, and alignment constraint

fragmentation.

2.2.1 Watermarking Constraint Fragmentation

Watermarking constraint fragmentation is a special case of internal fragmentation. It

is defined as the total amount of memory at addresses lower than an untyped object ’s

watermark, that was previously occupied by objects since freed, and is not available for

allocation. It is caused by the watermarking of untyped objects, described in Section 2.3.2:

allocating multiple objects in a single untyped region advances the watermark by the size

of the objects (and the number of bytes lost due to alignment in between those objects).

Future objects can only be allocated at the address immediately after the watermark

(higher). The watermark is reset to 0 only when all objects in an untyped region have

been removed.

Watermarking constraint fragmentation becomes especially problematic when objects

of different lifetimes get allocated in the same untyped region, as the memory will be

inaccessible until all objects in that region are freed.

Figure 2.6 shows an example sequence of allocations that causes watermarking con-

straint fragmentation (marked as red squares in the diagram). We can observe that after

freeing the object p1 or the object p3, regions previously occupied by them are marked as

red and temporarily lost due to watermarking constraint fragmentation. Only after the

final object, p2, is freed does the watermark (black arrowhead) advance back to address 0

and the regions occupied by p1, p2, p3 as well as the 2-word region between p1 and p2

can be used again.

2.2.2 Alignment Constraint Fragmentation

Alignment constraint fragmentation is also a type of internal fragmentation. It is defined

as the total amount of memory at addresses lower than an untyped object’s watermark,

that was unused to meet alignment requirements. It is caused by contiguous allocation of

objects with varying sizes: e.g., allocating a 24 byte object, such as a seL4 ReplyObject,

followed by a 212 byte allocation of a seL4 RISCV 4K Page in an empty untyped region,

would result in 212 − 24 = 4080 bytes lost to alignment constraint fragmentation.5

4seL4 does not have the concept of processes, but individual threads have separate virtual address
spaces.

5Object sizes provided for a 32-bit RISC-V architecture [26].

17

p1 = malloc(2*SIZ)

#define SIZ seL4_Word

p2 = malloc(4*SIZ)

p3 = malloc(4*SIZ)

free(p1)

free(p3)

free(p2)

0 16*SIZ-1

Figure 2.6: An example sequence of allocations and deallocations leading to watermark-
ing constraint fragmentation (red squares) of an untyped region. Memory lost due to
alignment (alignment constraint fragmentation) is marked as orange squares. The black
arrowhead marks the positions of the watermark/freeIndex. Figure inspired by [8].

Figure 2.7 shows an example sequence of 3 allocations, each requesting an object of a

different size. Allocating p1 is trivial, as the watermark of the untyped object is already

aligned to a multiple of the object size (0 mod (2×SIZ) = 0). After allocating a 2 word

object p1, the starting address of the allocation of p2 needs to be aligned to a multiple of

the size of that object: 5 × SIZ. This introduces 3 words (SIZ) of alignment constraint

fragmentation (marked orange). Next, in order to allocate an object p3 of size 3 × SIZ,

the starting address is aligned to a multiple of 3 times the word-size. As freeIndex is

currently equal to 10 × SIZ, the closest aligned starting address is 12 × SIZ, wasting 2

words of alignment constraint fragmentation.

p1 = malloc(2*SIZ)

#define SIZ seL4_Word

p2 = malloc(5*SIZ)

p3 = malloc(3*SIZ)

0 16*SIZ-1

Figure 2.7: An example sequence of allocations leading to alignment constraint fragmen-
tation (orange squares) of an untyped region. The black arrowhead marks the positions
of the watermark/freeIndex. Figure inspired by [8].

2.3 Background Information: Systems in Play

Our work focuses on improving memory allocation in CantripOS, an experimental oper-

ating system for cost-constrained, memory limited edge compute nodes. CantripOS is

18

developed as part of Google’s6 Open Se Cura project, it aims to be a provably secure

platform for building and running efficient machine learning applications [27, 28]. Design-

ers of CantripOS decided to build the system atop the seL4 [1] microkernel to satisfy the

security requirements of the operating system, as it is the only formally verified kernel

with strong guarantees of confidentiality, integrity, and availability [23, 24]. As part of

this project, the team behind Open Se Cura is designing custom RISC-V-based hardware.

As this hardware does not yet exist, development of CantripOS uses emulators such as

Renode [29]. It emulates CPU instructions functionally, but is not clock-cycle accurate,

meaning each RISC-V instruction is executed according to specification, but the time

and number of emulated clock cycles it takes does not reflect a real system. This will

be important when later reviewing the performance of our memory management system

modifications.

We now introduce key concepts in these systems, and highlight the elements our work

aims to improve – specifically the memory management system.

2.3.1 CantripOS

As seL4 is a microkernel (Section 2.3.2), implementations of higher-level functionalities

are either not included in the kernel or are provided as components residing in user space

(such as a file system, or a memory management system). This is to be expected, as

seL4 by itself is not an operating system. This where CantripOS comes in: it provides

services such as memory management, application management, Machine Learning model

coordination, UART, and file system drivers among others.

In the domain of memory management, seL4 provides an interface for dividing and

restricting access to memory regions (using capabilities), allocating objects (but with no

allocator logic in place) and freeing objects (tracking reference count as a tree of capability

derivation history, described in Section 2.3.2). Capabilities can be thought of as point-

ers to objects along with specific access rights attached to them, we introduce them in

Section 2.3.2. CantripOS on the other hand provides abstractions for group allocation of

objects, a next fit allocator handling arbitrary requests for memory, separation of static,

dynamic, and device mapped memory and an interface for applications (threads) to allo-

cate dynamic memory. All components that require dynamic memory allocation include

an IPC (inter-process communication) interface with the MemoryManger component, and

acquire it via its exposed interface.

CantripOS operating system7 is written in the Rust programming language, and uses

the memory safety features it provides through the ownership and borrow checker mech-

anisms [31].

It is constructed using CAmkES (Component Architecture for microkernel-based Em-

bedded Systems) [33], an architecture for component-based development of embedded

systems. The architecture of CantripOS appears in Figure 2.8, with some core compo-

6The system was developed in collaboration with lowRISC, Antmicro and VeriSilicon.
7The Rust source code for CantripOS is available in Open Se Cura repository [30].

19

Figure 2.8: Visualisation of the CAmkES components and their interfaces for CantripOS.
An edge represents an interface between two components: a curve and a circle is an IPC
connection (from curve to circle), a rectangle is a dataport, a triangle is an event (here
these are interrupts). Generated using a patched version of VisualCAmkES tool [32].

nents of the system highlighted for better readability. Each component is defined in a

.camkes file and CantripOS has a single system.camkes for each hardware platform it

supports (our project runs on the custom-built, emulated Shodan platform), which com-

bines the individual components, defines interfaces between them and resizes the stacks

of component threads where necessary. The components are created by the rootserver

thread (application) – the first thread that gets started by the seL4 microkernel after

initialisation, also known as the root task. It hands off capabilities to all physical, un-

typed (free) memory to the MemoryManager. The CantripOS Rust implementation of the

rootserver application provides some extensions to the original C implementation (called

capdl-loader-app), such as: support for reclamation of memory the rootserver occupied,

support for CantripOS-specific CAmkES features and reduced memory consumption.

The seL4 microkernel is written in the C programming language, and some glue code

is necessary in order for one to be able to interact with the other. This is mostly handled

via a Rust crate (library): sel4-sys.8 It provides wrappers for object passing, such as the

bootinfo struct, which contains capabilities to untyped objects for all physical memory

regions, among other things. Similarly to C system call bindings, the Rust equivalents are

automatically generated from seL4 XML interface definitions, directly calling architecture

specific assembly code for syscalls. For example, for RISC-V, it uses the environment call

ecall, which can be called from user mode to request execution of a system call in kernel

mode. We describe the limitations of memory management in CantripOS when presenting

the original design of that component in Section 3.1.2.

8While working on this thesis, an official Rust crate [34] was in development by contributors in the seL4
Foundation, however the Open Se Cura project began before its creation and maintains a slightly different
interface.

20

2.3.2 seL4

The kernel of CantripOS is the Secure Embedded L4 (seL49) operating system microkernel.

It is an open-source project released in 2009 by the Trustworthy Systems group at UNSW

Sydney (previously CSIRO Data61) belonging to the L4 microkernel family [36]. At the

time of writing this thesis, seL4 is the only operating system kernel with formal verification

of functional correctness and proofs of enforcing security properties of confidentiality,

integrity, and availability [23, 24, 1].

An operating system (OS) is the low-level system software that controls a computer

system’s resources and enforces security [1]. An OS can operate in a privileged (kernel)

mode, giving it direct access to hardware and more elevated execution of the CPU, than

applications which run in user mode. Figure 2.9 shows an abstracted view of a larger

10 kSLOC

Hardware

VFS

IPC, File System

Scheduler, Virtual Memory

Device Drivers, Dispatcher

Syscall

Hardware

IPC, Threads, Virtual Memory

Application

NW
Proto-
col
Stack

File
ServerDevice

Driver

IPC

Kernel
Mode

User
Mode

20,000
kSLOC

Figure 2.9: Operating-system structure: Monolithic kernel (left) vs microkernel (right).
Figure source [1].

monolithic kernel, such as Linux (on the left) and a microkernel (on the right). Unlike in

a monolithic kernel, a lot of components of a microkernel are executed outside of kernel

mode. One of the motivations behind designing microkernels is to decrease the trusted

computing base (TCB), defined as the subset of the overall system that must be trusted

to operate correctly for the system to be secure. This by itself drastically reduces the

kernel’s attack surface: seL4’s TCB is of the order of ten thousand lines of source code,

while the size of the Linux kernel is of the order of 20 million lines of source code [1]. The

downsides of microkernel architecture is that the kernel provides very minimal services:

just enough to securely multiplex hardware resources and isolate threads, along with inter-

process communication (IPC) protocol for communication and remote procedure execution

between threads. In order to provide the same services a monolithic OS implements in

the kernel, systems built with microkernels implement these services as programs (just

like user-space applications), each running in their own sandbox, with an IPC interface

for those programs to call [1].

In seL4, apart from a small amount of static kernel memory, all physical memory is

managed by user level. Capabilities to all objects created at boot time along with the rest

of physical memory seL4 can access are passed to the root task. In seL4, free memory is

referred to asuntyped memory. Untyped capabilities are capabilities to untyped memory.

9Note: seL4 is pronounced ”ess-e-ell-four”. The pronunciation ”sell-four” is deprecated [1]. C source
code is maintained on GitHub [35].

21

They can be later retyped into kernel objects and frame objects along with capabilities to

them, or other (smaller) untyped capabilities. Frame objects are physical memory frames,

which can be mapped into virtual memory and are accessible to user-space applications.

Retyping can be thought of as allocating memory: once a portion of an untyped capability

is retyped to a kernel object, that kernel object is created and pointed to by the newly

created capability. The seL4 kernel keeps track of a watermark for each untyped capability.

To satisfy the correctness proofs of seL4, the system only allocates objects at addresses

greater than the watermark [23, Section 3.2]. After each allocation, seL4 advances the

watermark to point immediately after the just-allocated object. The only scenario of the

watermark moving backwards is when capabilities to all objects in a particular untyped

object are deleted. The watermark is then reset to 0. We later refer to such an event as

a slab reset. This constraint on untyped objects is the sole reason behind watermarking

constraint fragmentation, Section 2.2.1.

Capabilities in seL4

A capability is an immutable tuple of an object reference and access rights, as shown in

Figure 2.10. For brevity, we provide a short introduction to capabilities, leaving the exact

details of capability benefits to [1]. In seL4, the only way to perform any operation on an

object is by invoking its capability. Access right granularity is far greater for a capability

based system, than for example a system that relies on access-control lists, such as Linux.

In seL4, are capabilities are stored in special objects: capability nodes (CNodes). A CNode

is a table of slots, where each slot may contain further CNode capabilities.

Obj reference
Access rights

Object

Figure 2.10: A capability is a unique token which contains specific rights to a particular
object. Figure source [1].

Relevant seL4 Object Invocations

In seL4, any operations on objects are performed via object invocations – a set of func-

tions that can be executed when given a capability with authorised access rights. The

memory management system of CantripOS relies on two object invocations, in particular:

seL4_Untyped_Retype for allocating memory and seL4_CNode_Delete for freeing mem-

ory.

seL4 Untyped Retype changes the type for a fragment of untyped memory held by an

22

untyped object into another seL4 type. This object invocation must be called on a ca-

pability for an untyped object. Returns 0 upon success, otherwise returns an error code.

It is worth noting that although the user space can request to allocate all types of ob-

jects (including kernel objects), the only objects accessible by it are called frame objects.

These can be mapped into a page table and userland programs can write to their memory

through the virtual memory abstraction. Whenever untyped objects are retyped, a special

data structure, called capability derivation tree, is updated by adding the newly created

object to the hierarchy of the parent untyped object. In the C implementation of the seL4

microkernel, this structure is represented as a doubly-linked list, equivalent to a prefix

traversal of the capability derivation tree. It is called the Mapping Database (MDB).

seL4 CNode Delete deletes a specified capability and, if the last reference to an object was

deleted, frees the underlying memory. Returns 0 upon success, otherwise returns an error

code. It is worth noting, however, that it does not return any information on whether this

was the last reference to an object (memory freed) and where the memory was freed. We

describe in Section 3.1.2 the limitations of memory management in CantripOS that result

from this.

23

Chapter 3

Design and Implementation

3.1 Original CantripOS Memory Management System

The original CantripOS memory manager, implemented in the MemoryManager compo-

nent, runs in a separate thread initialised by the rootserver. After system bootstrap,

the rootserver hands over all capabilities to untyped objects in the system to the

MemoryManager, including those that already are partially occupied by other system com-

ponent instances, as well as the rootserver objects.

The memory manager deletes all capabilities used in the rootserver by calling seL4 CNode Delete

on the top level CNode constructing the rootserver. As the memory manager holds ca-

pabilities to all available physical memory, this includes the untyped capability that holds

the objects for all CantripOS components. As these components occupy a fixed amount

of memory and are never removed, if the untyped capability holding them were used for

dynamic memory allocation, memory in that capability would never be freed because of

the watermarking mechanism described in Section 2.2.1. In order to reuse that mem-

ory, the untyped object is split into smaller objects beyond the current watermark index,

which at MemoryManager initialisation points to the end of the memory region occupied

by the system components. To match alignment and minimise waste, the MemoryManager

creates a few smaller untyped objects. During the development of our improvements to

the memory manager, we discovered that the algorithm for splitting the “dirty” untyped

object had a bug that was only triggered when system memory use grew larger than half

the size of the untyped object. This issue, along with a fix, is described in more detail in

Appendix B.1.

Afterwards, all untyped objects are separated into 3 categories: static, device and un-

typed. Static untyped objects are used for allocating static memory, which is not expected

ever to be freed by the system. There is very little use of it currently in the system. At the

time of writing this thesis, device untyped objects are not used in CantripOS. Finally, the

last category, untyped, includes all untyped memory that is used for dynamic allocation of

every seL4 object.

Each untyped object in each category is wrapped in an UntypedSlab struct. Here,

“slab” refers to a contiguous region of physical memory. Allocations from those slabs

24

“break off” pieces of contiguous physical memory, retyping them into the requested seL4

object types and advancing the watermark, as described in Section 2.3.2. Each UntypedSlab

struct keeps track of:

• cptr – index into the MemoryManager thread’s CNode containing the capability for

the untyped object,

• size – size (represented as bit-width1) of the untyped region pointed to by the

untyped capability,

• free bytes – number of bytes free for allocation in the slab,

• base paddr and last paddr – base and top physical addresses of the untyped

region covered by the untyped capability.

The original implementation did not precisely track the number of free bytes per slab,

though it was initialised to the correct value at system start. We explain this limitation

of the original design in more detail in Section 3.1.2. Also, _size, _base_paddr and

_top_paddr are not set to the actual, correct values for the slabs created during the

splitting of “dirty” untyped objects, as described above. These attributes were not used

in the original design, but had been added as placeholders for future improvements.

All UntypedSlabs are grouped into lists and sorted in descending order by size of

the untyped regions covered by each untyped object, determined by the free_bytes

attribute of each slab. For performance purposes, each list is represented as a Rust

SmallVec [37], statically allocated on the MemoryManager thread’s stack. The lists are:

_device_untypeds, static_untypeds and untypeds.

The basic interface of the MemoryManager component exposes four functions: alloc(),

free() and two functions for getting memory statistics. Both alloc() and free() ac-

cept ObjDescBundle structs, which contain a collection of individual object descriptors,

represented by ObjDesc structs. Additionally, alloc() accepts a MemoryLifetime enum,

which indicates whether an allocation is static or dynamic. However, the system currently

does not use any static allocations after boot. Their signatures are shown in Listing 3.1.

1 ...

2 pub trait MemoryManagerInterface {

3 fn alloc(

4 &mut self ,

5 bundle: &ObjDescBundle ,

6 lifetime: MemoryLifetime ,

7) -> Result <(), MemoryManagerError >;

8 fn free(&mut self , bundle: &ObjDescBundle) -> Result <(),

MemoryManagerError >;

9 ...

10 }

11 ...

Listing 3.1: MemoryManager’s basic interface for memory management.

1Bit-width is the number of bits used for the underlying binary representation. In seL4, all object sizes
are always represented in terms of bit-width.

25

Additionally, the memory manager exposes a collection of interface functions for use by

other components of the system. This interface is compiled with each component that

needs to dynamically allocate memory and handles the IPC communication with the

MemoryManager thread to make allocation and deallocation requests.

3.1.1 Original CantripOS Memory Allocator

The memory allocator uses the next fit allocation mechanism, as described in Section

2.1.1. The roving pointer is tracked as an index into the untypeds vector, and stored in

a cur_untyped variable.

When an allocation request arrives, and alloc() is called within the MemoryManager,

it attempts to allocate an object for each object descriptor present in the ObjDescBundle

function parameter. It does so by iterating over every slab in the untypeds vector, starting

from the one pointed to by the roving pointer. It attempts to allocate the object on

that slab by invoking seL4_Untyped_Retype. On success, it updates the global memory

bookkeeping information, such as total allocated object count and total allocated byte

count, and continues to the next object in the request list. On failure, the cur_untyped

roving pointer is incremented, wrapping back to the beginning of the list when it exceeds

the total number of elements in the untypeds vector. MemoryManager records the failed

allocation attempt. If the roving pointer arrives back at its starting position for a single

allocation, this means that no slab is big enough to fit the required object, and the function

returns an error, and records that an out of memory (OOM) occurred.

Freeing memory is much simpler on the userland side: free() is called within MemoryManager

and iterates over each object descriptor within the ObjDescBundle function parameter.

For each object descriptor, the delete_caps() function is called, which in turn invokes

seL4_CNode_Delete for each object in the CNode pointed to by the object descriptor.2

On success, the global memory bookkeeping information is updated by decreasing total

allocated object count and total allocated byte count. However, there is a possibility that

the number of objects tracked in CantripOS differs from the actual count if the capability

deleted is not the final capability pointing to that object. This is an immediate effect of

CantripOS’s not doing reference counting in the user space, further explained in Section

3.1.2. On failure, nothing happens.

3.1.2 Limitations of Memory Management in seL4/CantripOS

The CantripOS memory manager’s bookkeeping of allocated memory is only at the global

system level in user space: it does not track per-UntypedSlab statistics for the number

of allocated objects, free bytes and the current position of the watermark. But this

information is important, because after booting, all memory is managed in user space,

not the kernel, as described in Section 2.3.2. Without this information, each allocation

2For memory efficiency, object descriptors for objects of the same type and size that are contiguous
in a CNode are often merged together into a single descriptor, increasing the count of objects referred to
by that descriptor. The delete caps() function then iterates over each object in the object descriptor,
calling the delete invocation for each one.

26

request requires “guessing” whether a slab has enough space to fit an object, or sending an

allocation IPC request to the seL4 microkernel for every slab. This design does not allow

introducing an allocator more sophisticated than next fit or first fit. Two limitations of

the current implementation of memory management in CantripOS prevent keeping more

detailed statistics about memory, and thus possibly lead to incorrect global statistics:

lacking information about successful object deletion and lacking information about freed

memory’s location.

Lacking information about successful object deletion

Currently, when freeing an object, there is a possibility of an integer underflow, temporarily

avoided by explicitly checking for underflows on subtraction. A capability in seL4 can be

copied or badged (a copy of a capability with fewer rights), and seL4_CNode_Delete call

used for deleting capabilities only returns whether the request succeeded or failed. Section

2.3.2 describes this limitation in more detail, and explains how objects are reference-

counted in seL4. When a free request arrives, it is possible that the object was not

yet freed, but that only a capability to that object was removed. Thus, if on each free

request the global memory statistics are updated, an incorrect global allocated object

count would result when two free requests arrive for two distinct capabilities pointing to

the same object.

Lacking information about freed memory’s location

After memory is successfully freed (assuming the deleted capability was the final capability

pointing to the object backed by that memory), CantripOS only receives a boolean true

confirmation from the seL4 kernel. As CantripOS does not track exactly from which

UntypedSlab the memory was originally allocated, it has no way of knowing which untyped

object this memory is being returned to, and whether it was the last object in the slab,

which would cause the underlying untyped object’s watermark pointer to be reset.

To summarise, these two additional pieces of information are necessary to improve the

precision of bookkeeping of allocated memory globally, as well as to narrow the bookkeep-

ing to per-slab granularity. The following sections describe how we extended the seL4

microkernel to provide this information, as well as how we extended the user space of

CantripOS to track this information.

It is also worth considering why we rejected an alternative approach that would not

require any modifications to the seL4 kernel. This approach was advised against by Sam

Leffler, the core developer of CantripOS, who said it would be a complex modification

requiring changes to multiple system components, and thus not worth the effort [38]. This

purely user-space approach can be described in two steps:

1. Update the object descriptor structure definition to include a reference to the UntypedSlab

in which the object is allocated. This solves lacking information about freed memory’s

location, as the location can be deduced from the object descriptor on a successful

free() call.

27

2. Update the MemoryManager to reference-count each object descriptor. This solves

lacking information about successful object deletion, as the global/per-slab memory

statistics must only be updated once a final reference to an object is deleted.

This seemingly sound solution brings several drawbacks, which ultimately led to rejecting

this alternative design:

1. Each object descriptor takes up more memory, and there can be many objects allo-

cated, even in an embedded system.

2. The object descriptors can no longer be merged together in order to save space and

potentially decrease the number of IPC calls when freeing a larger application. This

effect can also have a knock-on impact on the system’s extensibility, if the layout of

the untyped memory hierarchy is modified in CantripOS.

3. This alternative design ends up replicating memory bookkeeping already present

in the seL4 microkernel: it reproduces ref-counting of objects and maintaining the

derivation history of objects, all already managed by the Mapping Database in seL4

(Section 2.3.2).

3.2 Our Initial Design: Improving Memory Manager via

MDB Traversal

The lack of per-slab statistics on allocated memory in CantripOS before our modification

prevents CantripOS from using more efficient allocation strategies.

3.2.1 Goals

1. To be able to allocate memory with a best-fit allocation strategy.

2. To be able to do bookkeeping of allocated memory accurately on a per-slab basis.

3. To be able to return more metadata than just an error code on every memory free

call (seL4 CNode Delete()). More precisely: to return the ID of the slab to which

memory was returned.

3.2.2 What to Return From the Kernel to Improve Memory Bookkeep-

ing?

The entire interface for memory allocation and deallocation relies on the Object Invoca-

tions seL4 Untyped Retype() and seL4 CNode Delete(). The seL4 Untyped Retype()

invocation is used for allocating new objects, while seL4 CNode Delete() deletes capabil-

ities, including ones pointing to objects, and is used to free memory. Full descriptions of

both invocations appear in Section 2.3.2.

28

One method of improving memory bookkeeping in CantripOS is to keep track of mem-

ory statistics per untyped slab. To do so, the MemoryManager component must know 3

things from the kernel:

1. On allocation – whether it succeeds or not.

2. On free – whether memory is freed or not. It is not enough just to know when a

capability is deleted. One must also know whether the capability was pointing to a

physical object, and whether this was the last capability pointing to that object.

3. On free – which untyped object (and therefore UntypedSlab) the memory is returned

to.

The rest of the required information can be tracked in user space. Here is a design for

the bookkeeping:

At boot time/MemoryManager initialisation:

Create an array called untypeds with a metadata object for each slab, keeping track of:

• Total space in the slab: this is returned from the kernel in the bootinfo structure,

and recalculated from those values when splitting untyped objects.

• Allocated bytes in the slab: how many bytes are currently unavailable for allo-

cation.

• Number of objects in the slab: how many objects are currently allocated.

During allocation

1. Based on the chosen allocation strategy, select the slab for allocating an object.

2. On success returned from the kernel, update the slab metadata element in the

untypeds vector by incrementing the number of objects attribute by the total

count of newly allocated objects and increment the allocated bytes attribute by

the total size of allocation, including memory wasted due to alignment (see Sec-

tion 2.2.2 for more information on alignment).

3. On failure, proceed according to the chosen allocation strategy(e.g., in the original

CantripOS, try the next slab).

During free/deallocation

1. On success returned from the kernel, also capture a boolean indicating whether any

memory was actually freed and the index of the slab to which the memory was

returned. The boolean is necessary, as objects are reference counted in the kernel

and not all capabilities point to objects backed by physical memory (see Section 2.3.2

for more information on ref counting).

29

2. Update the slab metadata element in the untypeds array with the index returned

from the kernel, decrementing the number of objects by the count of objects freed.

If the number of objects drops to 0, the slab is reset and the attribute allocated

bytes of the slab metadata is set to 0 (see Section 2.2.1 for more information on

slab resetting). This latter mechanism tracks seL4’s watermarked behaviour.

Of the three pieces of information needed from the kernel, the original memory manager

implementation only receives the first one: whether an allocation succeeded. Therefore,

the kernel code for the seL4 CNode Delete Object Invocation needs to be modified to

return the index of the slab to which memory is returned and whether any memory has

actually been freed. We now describe the corresponding kernel modifications.

3.2.3 Kernel Modifications

The sole kernel object invocation that needs to change is seL4 CNode Delete. The mod-

ification can be broken down into two steps: returning two additional values from the

invocation and getting the correct values, a boolean and an unsigned integer.

Returning two additional values from seL4 CNode Delete

We extend the seL4 Object Invocation XML interface definition for seL4_CNode_Delete

to include two additional return parameters, with the direction (dir) attribute set to out.

This is similar to returning of multiple values already implemented for seL4 Untyped Describe.3

The first parameter, untypedSlabIndex, is of type seL4 Word. It contains the index

of the CSlot in the MemoryManager thread’s topmost CNode, containing the capability of

the untyped object to which memory is being returned. If no memory is returned or the

slab cannot be identified, 0 is returned. By convention, the zeroth CSlot in a CNode is

kept empty, for the same reason as keeping the zeroth Page Table Entry unmapped in a

process’s virtual memory: to avoid errors when uninitialised slots are used unintentionally.4

Therefore, there is no risk of the 0 being misinterpreted as a valid CSlot.

The second parameter, isLastReference, is of type seL4 Bool. If it is true, it indi-

cates that the deleted capability points to an object backed by physical memory, and it is

the last capability pointing to that object in the Mapping Database (MDB). When it is

false, then there is at least one more capability pointing to the same object, or it is not a

physical capability. In the second case, there is no requirement to find the correct value

for untypedSlabIndex attribute, and 0 can be immediately returned in its place.

The modified XML definition of seL4 CNode Delete interface, including the two added

parameters, is shown in Listing 3.2.

1 <!-- Omitted for brevity --!>

2 <method id="CNodeDelete" name="Delete" manual_name="Delete" manual_label="

cnode_delete">

3 <brief>

3The XML definition can be found on the Open Se Cura repo [39].
4Source [40].

30

4 Delete a capability

5 </brief>

6 <description >

7 <docref >See <autoref label="sec:cnode -ops"/>.</docref >

8 </description >

9 <cap_param append_description="CPTR to the CNode at the root of the

CSpace where the capability will be found. Must be at a depth

equivalent to the wordsize."/>

10 <param dir="in" name="index" type="seL4_Word" description="CPTR to the

capability. Resolved from the root of the _service parameter."/>

11 <param dir="in" name="depth" type="seL4_Uint8" description="Number of

bits of index to resolve to find the capability being operated on."/>

12 <!-- Modified content start --!>

13 <param dir="out" name="untypedSlabIndex" type="seL4_Word" description="

Index of the Untyped in the top level CNode to which memory is returned

."/>

14 <param dir="out" name="isLastReference" type="seL4_Bool" description="

True if this operation deletes the last capability pointing to an

object."/>

15 <!-- Modified content end --!>

16 </method >

17 <!-- Omitted for brevity --!>

Listing 3.2: First design: Modified XML of the seL4 CNode Delete Object Invocation

interface.

Modifying the interface means the automatically generated Rust stub now returns a

Rust structure which contains two additional fields: untypedSlabIndex and isLastReference.

All functions in user space which use this invocation need to be updated to properly un-

wrap and handle these fields and error code. In most cases, the two additional returned

values can be safely ignored, apart from in the delete caps() function, implemented for

the MemoryManager struct, where the value is fully unwrapped and used. This function-

ality is described in more detail in Section 3.2.4.

Finally, the kernel function invoked by seL4 CNode Delete needs to be modified. We

extend invokeCNodeDelete5 to additionally take a word t *buffer parameter. This

parameter is necessary to satisfy the function signature of the setMR function, but it

would only be used to pass the values untypedSlabIndex and isLastReference if there

weren’t enough Message Registers. On RISC-V cores, seL4 configures registers a2, a3, a4

and a5 as message registers.

These values are set in the 0th and 1st message registers (the a2 and a3 registers

on RISC-V), using the setMR helper function. As shown in Listing 3.3, these values are

only modified if no exception occurred while capability deletion took place inside the

cteDelete() function. This is because if, for example, a pre-emption occurs, the message

registers used for function input (which are reused for output) would be overwritten by

our new untypedSlabIndex and isLastReference values. After returning on line 44,

these values would be stored by the calling function, assuming they are the input param-

5The invokeCNodeDelete function is defined in the seL4 C implementation [35].

31

eters to invokeCNodeDelete. When pre-emption occurs and registers are restored for the

invokeCNodeDelete function, it would restart with the wrong input parameters.

1 exception_t invokeCNodeDelete(cte_t *destSlot , word_t *buffer)

2 {

3 exception_t status;

4 word_t untypedSlabIndex = 0;

5 bool_t isLastReference = false;

6 word_t MEMORY_THREAD_CNODE_CPTR = 1;

7 // Extract the required book keeping values and assign to

untypedSlabIndex and isLastReference

8 if ((isLastReference = isFinalCapability(destSlot))) {

9 cte_t *parent_slot = destSlot;

10 while (mdb_node_get_mdbPrev(parent_slot ->cteMDBNode)) {

11 parent_slot = CTE_PTR(mdb_node_get_mdbPrev(parent_slot ->

cteMDBNode));

12 if (cap_get_capType(parent_slot ->cap) == cap_untyped_cap) {

13 break;

14 }

15 }

16 // If found the source untyped cap , get its index in the memory

manager thread ’s TCB’s uppermost CNode

17 if (cap_get_capType(parent_slot ->cap) == cap_untyped_cap) {

18 lookupCapAndSlot_ret_t lu_ret_cnode = lookupCapAndSlot(

NODE_STATE(ksCurThread), MEMORY_THREAD_CNODE_CPTR);

19 if (cap_get_capType(lu_ret_cnode.cap) == cap_cnode_cap) {

20 cte_t *cnode = CTE_PTR(cap_cnode_cap_get_capCNodePtr(

lu_ret_cnode.cap));

21 word_t radix = cap_cnode_cap_get_capCNodeRadix(lu_ret_cnode

.cap);

22 // Find index of our target untyped in the CNode

23 word_t max_slot = (1<<radix) -1;

24 for (word_t slot = 0; slot <= max_slot; ++slot) {

25 cte_t *query = &cnode[slot];

26 if (cap_get_capType(query ->cap) == cap_null_cap) {

27 continue;

28 }

29 if (query ->cap.words [0] == parent_slot ->cap.words [0] &&

query ->cap.words [1] == parent_slot ->cap.words [1]) {

30 untypedSlabIndex = slot;

31 break;

32 }

33 }

34 }

35 }

36 }

37 status = cteDelete(destSlot , true);

38 // Only change MRs if status is EXCEPTION_NONE (otherwise if call is

preempted , input registers will be dirited)

39 if (status == EXCEPTION_NONE) {

40 setMR(NODE_STATE(ksCurThread), buffer , 0, untypedSlabIndex);

41 setMR(NODE_STATE(ksCurThread), buffer , 1, isLastReference);

32

42 }

43 return status;

44 }

Listing 3.3: Second design: modified invokeCNodeDelete function in seL4 kernel.

Getting the correct values for untypedSlabIndex and isLastReference

To get the correct value for isLastReference, the kernel needs to check whether the

capability being deleted is backed by physical memory and if it is the last reference to the

pointed-to object. If so, this results in the underlying object being deleted and memory

being returned to its original untyped slab. Whether a capability is the last reference to an

object can be checked by looking at the nearby nodes of the Mapping Database (MDB).

As a reminder, MDB is a doubly-linked list. Traversing it is equivalent to a prefix

traversal of the capability derivation tree. In seL4, whenever a new capability is created

pointing to the same object, invokeCNodeInsert is also called, inserting a new MDB node

next to the newly created object capability’s MDB node. The MDB is discussed in more

detail in Section 2.3.2.

Because of the above, MDB nodes of capabilities pointing to the same object are always

grouped together, so it is sufficient to check whether the capabilities of the preceding and

succeeding MDB nodes point to the same object as the capability being deleted. If there

are no neighbouring MDB nodes whose capabilities point to the same object, then this is

the last reference to that object.

This logic is handled by the isFinalCapability() function, present in the kernel.

This is done on line 8 of Listing 3.3.

Getting the value for untypedSlabIndex is slightly more complicated, but can be

entirely avoided if isLastReference is false. That is why the boolean value is checked

first, and untypedSlabIndex is set to value 0 if the boolean is false.

If indeed the capability being deleted is the last reference to a target object, then

the MDB doubly-linked list can once again be used to determine which untyped object

(memory slab) the target object came from. We implement this with a backwards traversal

using a while loop, with the helper function mdb node get mdbPrev() which returns the

next-higher MDB node in the capability derivation hierarchy. The traversal is shown on

lines 9− 14 of Listing 3.3. The traversal stops at the first untyped capability, rather than

the last. This is because, for example, the untyped slab reclaimed by the MemoryManager

from the rootserver thread’s memory is partially allocated and is split into a few smaller

slabs, so objects located on those slabs will have more untyped objects in their derivation

hierarchy.

If during the traversal the untyped capability is not found then the capability that is

being deleted is not a physical capability and untypedSlabIndex can be safely set to 0.

After the capability to the untyped slab is found, we perform a linear search through all

CSlots of the MemoryManager thread’s top-level CNode, in which we compare each non-null

capability, in lines 18−36 of Listing 3.3. There are existing functions for comparing objects

33

and memory regions within the kernel: sameObjectAs and sameRegionAs. Unfortunately,

sameObjectAs only works for capabilities that are not untyped, and sameRegionAs would

return incorrect values (e.g., the untyped slabs derived from the reclaimed memory are

all within the same memory region). However, capabilities are defined as unforgeable and

unique tokens in the seL4 specification [25, Section 2.1] and the seL4 capability tutorial6,

hence we compare them directly. If the capability of the parent untyped object and a

capability in the top-level CNode match, untypedSlabIndex must be assigned the index

of the CSlot containing the matching capability.

3.2.4 User Space Modifications

Apart from the functions that use the seL4_CNode_Delete object invocation but don’t

require the newly introduced return values, the only file that needs to be modified is the

MemoryManager component’s mod.rs file. The files, which don’t require the additional

output, are modified to unwrap the returned error code and ignore the rest.

Two things change in the mod.rs file: First, the UntypedSlab structure definition is

expanded by two additional fields: allocated bytes and allocated objects. Second,

the alloc() and free() functions are modified to update the memory bookkeeping values

for each slab.

With the following modifications made, new allocation strategies can be implemented,

better logging can be put in place and new benchmarks can be established for measuring

the space and computational efficiency of this memory management system. We further

explore these ideas in Sections 3.4 & 4.

Expanding UntypedSlab definition

There are two fields necessary to keep per-slab memory statistics in CantripOS: allocated bytes

and allocated objects.

The reasoning behind allocated objects is very simple: the watermarking mecha-

nism in seL4 (Section 2.2.1) means that freeing single objects doesn’t always guarantee

that more memory can be allocated in a particular untyped slab. Only once all objects

have been freed, is the slab reset and does all memory become available again. By keeping

track of the allocated object count in each slab (untyped object), the system knows ex-

actly when a previously full slab becomes fully empty. Additionally, this is useful to track

because allocation strategies can now be considered that try to place short-lived/similar

lifespan objects in the same slab to hopefully allow a slab reset, and thus use memory

more efficiently.

allocated bytes stores the total number of allocated bytes in a slab, and is only

decreased (set to 0) when the count of allocated objects (tracked by allocated objects)

drops to 0. The slab is considered full once allocated objects reaches the value of

free bytes.

6The referred to capability tutorial is available in [40]

34

Updating alloc() and free()

alloc() is updated to increment the allocated objects attribute of the UntypedSlab in

which a request was allocated by the number of objects that were allocated, and increment

allocated bytes by the total size of all allocated objects, including memory wasted due

to alignment (see Section 2.2.2 for more information on alignment).

The free() function is updated to unwrap isLastReference and untypedSlabIndex

from the invocation of seL4 CNode Delete. If isLastReference is true and untypedSlabIndex

is non-null, the slab with a matching cptr to the untypedSlabIndex is updated by decre-

menting allocated objects by 1 for each deleted object. If the value reaches 0, it also

resets allocated bytes to 0. The correct UntypedSlab is identified through a linear

search of the untypeds SmallVec.

3.3 Our Improved Design for the CantripOS Memory Man-

ager

After further study of the system, while we saw the approach described in Section 3.2 is

correct, we determined that it might be slow because it introduces an order-linear depen-

dency on the number of neighbours of an object in the seL4_CNode_Delete invocation.

This behaviour is a consequence of how the Mapping Database (MDB) doubly-linked list is

constructed when allocating new objects: it inserts an entry for the new object in that list

directly after the source untyped from which it originates. It leads to, in the worst case,

traversing all existing objects in a slab during object deletion. We present an experiment

confirming this in Appendix C.1. An example of such a traversal appears in Figure 3.1.

This issue was noticed and raised during our discussions with Sam Leffer [38] and Kent

Mcleod [41].

Mapping Database (MDB) Doubly Linked List

Parent
Untyped Neighbour Neighbour Neighbour Neighbour Target

Object

Figure 3.1: An example traversal through the Mapping Database list when identifying the
source Untyped Object (parent) of a Target Object. If multiple objects are allocated in
that Untyped, the program may need to iterate over an MDB list entry for each object.

After reconsidering the design in Section 3.2, we at a new solution, described be-

low, of O(1) complexity in the user space and without increasing the complexity of the

seL4_CNode_Delete invocation in the kernel. It requires more work to take place in the

user space - constant in terms of number of allocations and allocated objects, and linear in

35

terms of number of slabs. In comparison, the seL4 kernel requires very little modification.

The new approach, instead of using the MDB list to identify the parent untyped object,

relies on the fact that each object located in an untyped region will have a physical address

that is lying between the base and top physical address of the untyped region.

3.3.1 Goals

The goals of this design remain mostly the same as the ones described in Section 3.2.1.

The only difference being goal 3, which previously described returning ID of the slab to

which memory is returned. The new goal instead is to return the physical address of the

object that was deleted (if it was deleted).

3.3.2 What to Return From the Kernel to Improve Memory Bookkeep-

ing?

As in Section 3.2.2, the information needed to maintain proper per-slab granularity book-

keeping of memory remains the same.

3.3.3 Kernel Modifications

Part of the required modification to the kernel overlaps with the one proposed for the

previous design, described in Section 3.2.3, but there are a few caveats. The two required

modifications are: returning a single additional value from invocation and getting the

physical address of the deleted object.

Returning a single additional value from seL4 CNode Delete

Instead of returning the index of the untyped object in the top level CNode, the phys-

ical address of the deleted object is returned. This value is captured by the parameter

objPaddr, also of type seL4_Word. Upon further inspection of the previous design, it be-

comes apparent that the boolean isLastReference can be “merged into” the other value

returned. More specifically, the objPaddr represents a physical address, which must be

greater than or equal to PADDR_BASE and smaller than or equal to PADDR_TOP constants7,

both of which are defined per architecture in the kernel. It is therefore safe to reserve a

value of objPaddr greater than PADDR_TOP to represent the false value of the original

isLastReference parameter. The true value is implied when objPaddr is any valid value.

As we are working with a 32-bit RISC-V system, we selected the value of the maximum

unsigned 32-bit integer as the ”special” value. The Listing 3.4 highlights the portion of

the XML displayed in Listing 3.2 that is modified for the approach described here.

1 <!-- omitted for brevity --!>

2 <param dir="in" name="depth" type="seL4_Uint8" description="Number of

bits of index to resolve to find the capability being operated on."/>

3 <!-- Modified content start --!>

7The constants PADDR BASE and PADDR TOP are defined in the seL4 C kernel implementations in [26].

36

4 <param dir="out" name="objPaddr" type="seL4_Word" description="Physical

address of the object being deleted. Is set to UINT32_MAX if

capability deleted is not backed by physical memory , or is not the last

capability pointing to that object (refcounting)."/>

5 <!-- Modified content end --!>

6 </method >

Listing 3.4: Second design: Portion of the modified XML for the seL4 CNode Delete

Object Invocation

1 exception_t invokeCNodeDelete(cte_t *destSlot , word_t *buffer)

2 {

3 exception_t status;

4 // Returns the objects physical address (for kernel mem: constant

offset from the virtual memory by PPTR_BASE_OFFSET),

5 // if the capability is pointing to a physical object (backed by

physical mem), and is the last capability

6 // pointing to this particular object (refcounting). Otherwise , returns

UINT32_MAX

7 word_t objPaddr = UINT32_MAX;

8 // Only tracked for capabilities which are backed by physical memory

9 if (cap_get_capIsPhysical(destSlot ->cap)) {

10 if (isFinalCapability(destSlot)) {

11 objPaddr = (word_t)cap_get_capPtr(destSlot ->cap)-

PPTR_BASE_OFFSET;

12 }

13 }

14 status = cteDelete(destSlot , true);

15 if (status == EXCEPTION_NONE) {

16 setMR(NODE_STATE(ksCurThread), buffer , 0, objPaddr);

17 }

18 return status;

19 }

Listing 3.5: Second design: modified invokeCNodeDelete function in seL4 kernel.

Getting the physical address of the deleted object

To get the correct value for objPaddr, the kernel needs to make sure the capability being

deleted is a physical capability, cap get capPtr() is undefined for other capabilities, and

it does not make sense for a non-physical capability to have a physical address (line 9 in

Listing 3.5). If it is a physical capability, and it is also the final capability of the pointed-to

object, then the physical address of the object is calculated (lines 10 − 11 in Listing 3.5).

The value returned from cap get capPtr() is a physical pointer – which means it

is a pointer to the virtual address space of the kernel. Similarly to the 2.6 version of

Linux kernel [11, Section 3.7.1], the seL4 kernel sets up a direct mapping from its virtual

kernel address space to the physical kernel address space. This mapping is done by simply

subtracting the PPTR_BASE_OFFSET from a virtual pointer, and the result is a physical

address in the kernel’s physical address space. We need to perform this mapping either

37

here, or later in the user space, as all the pointers to untyped objects handed off at boot

time to the rootserver (and later, MemoryManager thread) are physical addresses of those

objects.

If the capability for deletion is not a physical capability, or it is not a final capability,

the max untyped 32-bit integer value is returned instead as objPaddr. If any issues occur

while the capability is being deleted (cteDelete function call gets pre-empted, line 14 in

Listing 3.5), the message register is not modified.

3.3.4 User space Modifications

In user space, the changes required are very similar to the previous design, described in

Section 3.2.4.

The free() function, now unwraps the objPaddr value from the invocation seL4_CNode_Delete.

If objPaddr is equal to the maximum value of an unsigned 32-bit integer (target system

is RISC-V 32-bit), no bookkeeping information is updated. Otherwise, the system iter-

ates over every UntypedSlab in the untypeds array, and checks if objPaddr falls within

the physical address boundaries of the untyped object of the slab, by comparing with

_base_paddr and _last_paddr attributes of the slab8. When a match is found, the book-

keeping information for that slab is updated: decrementing allocated_objects attribute

by 1 for each deleted object. If the value reaches 0, allocated_bytes attribute is also

reset to 0.

3.3.5 Validation of the Designs’ Correctness

For both designs implemented, their correctness was validated in terms of impact on the

seL4 kernel’s correct execution (not a formal proof), and the correctness of the newly

added per-slab memory bookkeeping information.

To satisfy the first validation goal, we checked the modified seL4 kernel of the system

using the seL4Test test suite [42]. The test suite runs small, user level programs checking

various features of the kernel via Object Invocations and system calls.

Unfortunately, the user space portion of CantripOS, being a fresh and experimental

system, does not have a complete unit test suite. Therefore, to satisfy the second validation

goal, we ran extensive stress tests on the CantripOS system, using shodan_stress.robot

script, which sequentially starts and stops various test applications (some of these ap-

plications are introduced in more detail, in Section 4.1.3), along with the later designed

synthetic workloads, described in Section 4.1.2. We checked the correctness of the im-

proved memory bookkeeping, by periodically dumping the status of untyped slabs along

with the actual (tracked by kernel) current state of each untyped object’s watermark9,

8The original implementation of CantripOS did not update the physical address boundaries for untyped
objects which were created at boot time from “dirty” untyped objects (e.g. ones containing the system
CAmkES components). We uncovered this while implementing this modification, and fixed it accordingly.

9The actual, in-kernel, information on each untyped object was obtained using a custom CantripOS
UntypedDescribe object invocation, which returns exact information on a specific untyped object. It is
used for reclaiming untyped objects from the rootserver and safely splitting slabs during MemoryManager

initialisation.

38

and verifying the watermark position is the same and object count is properly updating.

No implementation of software is immune to the possibility of bugs (apart from the

verified configuration of seL4, which has a proof backing this up [23, 24]), and our design

was no different. Through the extensive testing, we uncovered and fixed various bugs

created along the way, including some which were present in the system beforehand. The

latter bugs were more interesting, as they were present in the system before any proposed

design changes were introduced. For example, the earlier mentioned bug in incorrect dirty

untyped object splitting, described in more detail in Appendix B.1. Additionally, our

random synthetic workload (Section 4.1.2) uncovered a small bug in the sel4sys Rust:

the size_bits function returned an incorrect value for seL4_NotificationObject10.

3.4 Implementing the Best-Fit Strategy for Memory Allo-

cation

The currently implemented allocation strategy in CantripOS, next fit, is a good choice for

the limited information available, as it tries to minimise the amount of failed allocation

attempts. However, an implementation of best fit strategy would cut down the amount of

failed seL4 Untyped Retype Object Invocations down to 0, while potentially decreasing

memory fragmentation. Previous research has shown that best fit is a very good allocation

policy, but it is often unfairly dismissed as being impossible to implement efficiently [9].

However, since CantripOS uses a fixed number of untyped objects, determined at sys-

tem initialisation, and seL4’s watermarking constraint means that there is always a fixed

amount of free blocks that can be considered. This makes best fit a much more attractive

allocation policy, with the overhead of each allocation potentially much closer to other

sequential fit allocation policies. We measure and report this overhead, as described in

Section 4.1.1.

The actual implementation of the best fit allocator is very simple, on a high level it

involves the following:

1. Iterate over each object descriptor in an object descriptor bundle.

2. For each untyped slab, compute the space that is left usable on the slab after allo-

cation. The computation includes alignment constraint fragmentation, but does not

try to minimise it; it only minimises the space left above the watermark, which is

the leftover memory.

3. Attempt to allocate on the slab, which would lead to minimal “leftover” memory in

a slab. This operation can only fail if an out of memory error were to occur, or the

bookkeeping of memory is incorrect.

4. On successful allocation, update the bookkeeping information for the untyped slab.

10This tiny change has already made it upstream to the Open Se Cura repo.

39

3.5 Infrastructure for Performance Analysis

In order to assess the system’s performance, we propose and implement several workloads

with varying patterns of memory allocation and deallocation requests. The exact details of

workloads used are presented in Sections 4.1.2 & 4.1.3. Creating, running and collecting

data from evaluations using these workloads requires additional software infrastructure

within the CantripOS system, outlined below. In the interest of brevity, this outlined will

be limited to high-level description of modification.

The MemoryManager along with MemoryManagerStats structs are amended to keep

track of additional metrics, such as: watermarking constraint fragmentation per slab,

alignment constraint fragmentation, total occupied memory per slab.

We extend the IPC interface for MemoryManager to allow for runtime selection of

allocator mechanism, enabling/disabling tracing and enabling/disabling logging of retired

instruction count per alloc() and free() function call.

Further, we extend the DebugConsole to include user-accessible commands for run-

ning and configuring synthetic workloads, enabling memory allocation request tracing and

dumping these traces to console, replaying these traces and also running pre-made repre-

sentative workloads using traces of real applications, as described in Section 4.1.3.

40

Chapter 4

Performance Evaluation

4.1 Experiments

We consider two kinds of workloads for performance analysis of CantripOS’s memory

management system, synthetic (Section 4.1.2) and representative (Section 4.1.3), each

motivated by different goals.

G1. Range of possible behaviours. The first goal is to explore the range of

possible behaviours of the implemented memory allocators. These types of workloads are

not representative of real programs, and produce varied request patterns. This is not a

coincidence or an oversight, but deliberate by design, as such synthetic traces have been

broadly used for measuring relative performance of different dynamic memory management

algorithms [43]. Analysing the memory fragmentation outcome of these workloads is

expected to give further insights into behaviour of next fit and best fit allocation strategies

in the specific, restricted environment of CantripOS and seL4.

G2. Behaviour under real workloads. The second goal, is to analyse the memory

allocators’ behaviour when subject to workloads representative of real applications. As

CantripOS, at the time of writing this, is a new and still experimental system, there are no

such applications available yet. Instead, there are some sample applications, which do real

work (spawning a thread with a heap, using timers, I/O and loading and calling Machine

Learning models) but not yet useful work. They are however the closest thing to an actual

target workload for this system, the exact method of how they are used for evaluating the

performance of CantripOS’s memory management system is detailed in Section 4.1.3.

Additionally, Wilson et al. [5], describe common patterns of memory requests observed

in program behaviour. This work attempts to reconstruct the behaviours described to

further explore memory allocator behaviour in a realistic-like setting.

G3. Measure latency of allocation and deallocation. The third goal, is to

identify what overhead in terms of executed instructions, if any, does the introduction

of best fit algorithm have. An additional subgoal is to identify whether the number of

failed retyping object invocations has an impact on the performance of the original, next

fit allocator.

41

4.1.1 Measured Metrics

For all experiments, we collect data on the following metrics:

Alignment constraint fragmentation is the amount of memory lost due to the alignment

constraint, as described in Section 2.2.2. This metric is collected at a per-slab granularity.

Watermarking constraint fragmentation is the amount of memory lost due to the wa-

termarking constraint, as described in Section 2.2.1. This metric is collected at a per-slab

granularity.

Retired CPU instruction count is the number of CPU instructions that were executed

by the CPU up to the point of measurement. For RISC-V cores, this value is constantly

updated in the instret CSR register and can be obtained using the RDINSTRET pseudo-

instruction [44, Section 2.8]. This metric is used to determine latency of an alloc() and

free() function calls in the user space, as per the goal G3.

Failed retype invocation count is the number of failed seL4_Untyped_Retype object

invocations.

Out of Memory (OOM) count is the number of OOM errors that were thrown during

a workload’s execution.

Number of slab resets tracks the number of times an untyped object’s watermark

was reset to 0. These resets represent reuse of previously allocated and freed memory,

and should indicate potentially improved efficiency of memory utilisation under seL4’s

watermarked physical memory allocator.

4.1.2 Synthetic Workloads

Most early research papers looking into workloads used for measuring and evaluating mem-

ory allocator performance relied on using completely random object sizes and lifetimes.

This was partially based on false assumptions that size and lifetime distributions of mem-

ory allocations are independent [5]. Both Zorn and Grunwald [43] as well as Johnstone and

Wilson [9] have shown that the regularities in size and lifetime distributions of memory

requests play an important role in the fragmentation behaviour of allocators.

However, although synthetic workloads cannot easily replicate such distributions of

real applications, they are a useful tool for meeting the goal of exploring the range of

possible behaviour of allocators (G1). These workloads also have much more allocation

and deallocation requests than representative workloads, so they allow for more accurate

measurement of latency of allocations and deallocations (G3).

Randomly distributed workloads

The flow of this workload is presented in Figure 4.1. In this implementation, such a

workload is characterised by: a random integer seed, total number of memory requests and

percentage chance for deallocation (called: free chance in Figure 4.1). The random integer

seed is used for initialising the pseudo-random number generators for reproducibility, total

number of memory requests is how many allocation and deallocations combined will the

42

workload attempt and percentage chance for deallocation determines the likelihood of a

random object being deallocated while the workload is running.

At each step of the workload, a random value from 1-100 is drawn, and if it’s smaller

than the percentage chance for deallocation, a random object to be freed. Because we

are working in a memory-constraint environment of embedded systems, there is also a

hard upper limit of 1000 objects live at the same time. If this amount is ever reached

during a random trace simulation, regardless of the random value drawn, an object

descriptor is deallocated. This is to avoid system failure due to running out of heap

memory. If an allocation is to be performed instead, a random object type out of 9

possible physical seL4 objects is chosen: seL4_UntypedObject, seL4_CapTableObject,

seL4_SchedContextObject, seL4_SmallPageObject1, seL4_TCBObject, seL4_EndpointObject,

seL4_NotificationObject or seL4_PageTableObject. For the first four types, addition-

ally a random size for that object is chosen – for the page object rather than size, this

value is the number of consecutive pages. After the number of requests matches the to-

tal number of memory requests (workflow len on the diagram), the workflow makes free

requests for all remaining objects and exits.

There are a total of 4 experiments performed for this study, using the randomly dis-

tributed workloads, repeated 3 times to collect all the data described in Section 4.1.1, for

both the original next fit implementation and the best fit implementation described in

Section 3.4. The parameters for the experiments are summarised in Table 4.1. As further

highlighted in Section 4.2.1, the parameter capturing percentage chance for deallocation

was originally exponentially spaced in powers of 2, but 48% was later added (mid-point

between 32 and 64) for a more holistic view of the system behaviour.

seed total request count perc. chance for deallocation allocator

42 1000 {16, 32, 48, 64}% {best fit, original next fit}

Table 4.1: Synthetic traces: Randomly distributed workload experiment parameters.

4.1.3 Representative Workloads

In order to study behaviour of the newly implemented allocator in real world scenarios,

we utilise the existing limited number of applications performing real work. Experiments

using these workloads aim to meet the goal of analysing the allocators’ behaviour under real

workloads (G2). Four applications were chosen: hello, timer, fibonacci and mltest.

Each application in CantripOS always runs on a separate thread. The exact allocation and

free requests performed by each app were traced during the runtime of those applications

by the tracing mechanism described in Section 3.5, inspired by earlier papers on dynamic

memory allocation evaluation [5, 9]. These traces allow for easy reproducibility, much

faster replication of the exact behaviour of specific applications and creating hybrid traces

for evaluating future features of CantripOS. Each application is an example of a ramp

1This is an architecture-agnostic abstraction, for RISC-V 32-bit the exact object name is:
seL4 RISCV 4K Page.

43

no

yesuniform random
k ≥ free chance?

Random choice:
object type

Random choice:
allocated object

free() object

Is object type
 of variable size?

Random choice: size
for object

yes

alloc() object

no

no

num operations ≥
workflow len?

free() remaining
objects; exit

yes

Start

Figure 4.1: Simplified diagram of the uniform synthetic random workflow. Omitted in
the diagram: on first step, if there are no allocated objects – always allocate, if allocated
object count exceeds 1000 – always deallocate.

behaviour app [5], allocating memory at the start of its execution and only deallocating

on exit, except for mltest, which deallocates a large chunk of memory during its execution,

but does not allocate any memory afterwards hence it is not visible in the app’s memory

profile (Figure 4.5).

Standalone application trace workloads

These workloads replay each application’s individual trace, measuring memory fragmenta-

tion. As the applications are not very complex by themselves, we expect these workloads

to show minimal fragmentation across both allocators.

The hello application is a minimal C app, which simply prints two messages to the

debug console, after which it loops forever calling seL4_Yield system call on each iteration,

donating the rest of its time slice to a different thread. Source code of the application is

presented in the Listing 4.1. The app’s peak memory footprint is exactly 46, 400 bytes

across 15 different objects. Memory profile of this application is presented in Figure 4.2.

1 #include <cantrip.h>

44

2

3 int main() {

4 debug_printf("\nI am a C app!\n");

5 debug_printf("Done , sleeping in infinite loop\n");

6 while (1) {

7 seL4_Yield ();

8 }

9 }

Listing 4.1: hello C app source code.

The timer application is a slightly more complex Rust app, it uses the CantripOS’s

runtime SDK and starts 2 different timers. After the timers expire, the application exits.

Source code of the application is available on the Open Se Cura repo. The app’s peak

memory footprint is exactly 104, 448 bytes across 29 different objects. Memory profile of

this application is presented in Figure 4.3.

10000 20000 30000 40000

Bytes Requested

0

10000

20000

30000

40000

B
yt
es

in
U
se

Bytes in Use vs. Bytes Requested

10000 20000 30000 40000

Bytes Requested

−0.04

−0.02

0.00

0.02

0.04

W
at
er
m
ar
ki
ng

C
on
s.

F
ra
gm

en
ta
ti
on

Watermarking Cons. Fragmentation vs. Bytes Requested

10000 20000 30000 40000

Bytes Requested

0

1000

2000

3000

A
lig
nm

en
t
C
on
s.

F
ra
gm

en
ta
ti
on

Alignment Cons. Fragmentation vs. Bytes Requested

Best Fit - Bytes in Use

Next Fit - Bytes in Use

Best Fit - Slab Resets

Next Fit - Slab Resets

Best Fit - Watermarking Con. Fragmentation

Next Fit - Watermarking Con. Fragmentation

Best Fit - Alignment Con. Fragmentation

Next Fit - Alignment Con. Fragmentation

0

2

4

6

S
la
b
re
se
t
co
un
t

1

Figure 4.2: hello C app: memory profile.

0 20000 40000 60000 80000 100000

Bytes Requested

0

20000

40000

60000

80000

100000

B
yt
es

in
U
se

Bytes in Use vs. Bytes Requested

0 20000 40000 60000 80000 100000

Bytes Requested

−0.04

−0.02

0.00

0.02

0.04

W
at
er
m
ar
ki
ng

C
on
s.

F
ra
gm

en
ta
ti
on

Watermarking Cons. Fragmentation vs. Bytes Requested

0 20000 40000 60000 80000 100000

Bytes Requested

0

500

1000

1500

2000

2500

3000

A
lig
nm

en
t
C
on
s.

F
ra
gm

en
ta
ti
on

Alignment Cons. Fragmentation vs. Bytes Requested

Best Fit - Bytes in Use

Next Fit - Bytes in Use

Best Fit - Slab Resets

Next Fit - Slab Resets

Best Fit - Watermarking Con. Fragmentation

Next Fit - Watermarking Con. Fragmentation

Best Fit - Alignment Con. Fragmentation

Next Fit - Alignment Con. Fragmentation

0

2

4

6

8

S
la
b
re
se
t
co
un
t

1

Figure 4.3: timer Rust app: memory profile.

The fibonacci application is another C app, which prints the first 80 Fibonacci num-

bers to the console, waiting for 200 interrupts between each number. The program loops

45

forever, until it’s killed. Source code of the application is available on the Open Se Cura

repo. The app’s peak memory footprint is exactly 208, 896 bytes across 58 different objects.

Memory profile of this application is presented in Figure 4.4.

The mltest application is a Rust app, and the only one which uses the system’s ML

core (Kelvin). It is also the only app which during its runtime performs both memory

allocation and deallocation requests. It starts by loading an example model into memory

(roughly 1 MiB in size), offloading it to the ML core and freeing the objects required for

storing the model, then prints out the model’s output 10 times in 1s intervals. Source

code of the application is available on the Open Se Cura repo. The app’s peak memory

footprint is exactly 1, 157, 376 bytes across 285 different objects. Memory profile of this

application is presented in Figure 4.5.

0 20000 40000 60000 80000 100000

Bytes Requested

0

20000

40000

60000

80000

100000

B
yt
es

in
U
se

Bytes in Use vs. Bytes Requested

0 20000 40000 60000 80000 100000

Bytes Requested

−0.04

−0.02

0.00

0.02

0.04

W
at
er
m
ar
ki
ng

C
on
s.

F
ra
gm

en
ta
ti
on

Watermarking Cons. Fragmentation vs. Bytes Requested

0 20000 40000 60000 80000 100000

Bytes Requested

0

500

1000

1500

2000

2500

3000

A
lig
nm

en
t
C
on
s.

F
ra
gm

en
ta
ti
on

Alignment Cons. Fragmentation vs. Bytes Requested

Best Fit - Bytes in Use

Next Fit - Bytes in Use

Best Fit - Slab Resets

Next Fit - Slab Resets

Best Fit - Watermarking Con. Fragmentation

Next Fit - Watermarking Con. Fragmentation

Best Fit - Alignment Con. Fragmentation

Next Fit - Alignment Con. Fragmentation

0

2

4

6

8

S
la
b
re
se
t
co
un
t

1

Figure 4.4: fibonacci C app: memory profile.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Bytes Requested ×106

0.0

0.2

0.4

0.6

0.8

1.0

1.2

B
yt
es

in
U
se

×106 Bytes in Use vs. Bytes Requested

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Bytes Requested ×106

−0.04

−0.02

0.00

0.02

0.04

W
at
er
m
ar
ki
ng

C
on
s.

F
ra
gm

en
ta
ti
on

Watermarking Cons. Fragmentation vs. Bytes Requested

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Bytes Requested ×106

0

1000

2000

3000

4000

5000

6000

A
lig
nm

en
t
C
on
s.

F
ra
gm

en
ta
ti
on

Alignment Cons. Fragmentation vs. Bytes Requested

Best Fit - Bytes in Use

Next Fit - Bytes in Use

Best Fit - Slab Resets

Next Fit - Slab Resets

Best Fit - Watermarking Con. Fragmentation

Next Fit - Watermarking Con. Fragmentation

Best Fit - Alignment Con. Fragmentation

Next Fit - Alignment Con. Fragmentation

0

5

10

15

S
la
b
re
se
t
co
un
t

1

Figure 4.5: mltest Rust app: memory profile. This
app also uses the ML core.

46

Sequentially interleaved application workloads

In the current state of CantripOS, the applications can be started and stopped sequen-

tially from the CLI, using the start <app name> and stop <app name> commands. Each

application has therefore two distinct events: starting and stopping it. A sample, realistic

workload can therefore be launching and stopping some applications in different orders.

Since we used 4 applications for the performance evaluation, there are 8 total events that

can occur. However, early experimentation has shown that interleavings with only 8 events

lead to very limited results and extremely easy workloads for both allocators, resulting in

almost no fragmentation, hence we decided to use 8 applications instead. The additional

four are copies of the hello, timer, fibonacci and mltest apps, leading to a total of

16 start/stop events. Since the space of possible interleavings has factorial growth (for

16 events, there are over 81 billion possible interleavings), exploring all possible arrange-

ments is intractable, hence we settled on exploring the behaviour of 3. All 3 sequences are

presented in Table 4.2.

sequence name sequence

1. Multiple peaks behaviour hello hellos timer timers mltest mltests fibonacci
fibonaccis hello2 hello2s timer2 timer2s mltest2
mltest2s fibonacci2 fibonacci2s

2. Large ramp behaviour hello timer mltest fibonacci hello2 timer2 mltest2
fibonacci2 fibonacci2s mltest2s timer2s hello2s
fibonaccis mltests timers hellos

3. Select random interleaving hello timer mltest timers mltests fibonacci
hello2 timer2 hellos fibonaccis mltest2 fibonacci2
fibonacci2s mltest2s hello2s timer2s

Table 4.2: Representative traces: Sequentially interleaved application workloads.
app names indicates this is the exit (stop) event of the application. app name2 indi-
cates a copy of app name trace is used.

Sequence 1: Many peaks behaviour [5], the trace simulates each application being

started then stopped one after the other, resulting in 8 individual “peaks” of memory

usage. This workload is expected to produce results exactly the same as the Figures of

each standalone application, concatenated in the order described in Table 4.2 and repeated

twice. The memory profile of this sequence is presented in Figure 4.12.

Sequence 2: Large ramp behaviour [5], the trace simulates each application being

started, then after all applications are “running” – memory for them is allocated, each

application is stopped in the reverse order. This workload is expected to produce more

alignment constraint fragmentation than Sequence 1, as more memory is used, so there is

a higher chance for different-sized allocations to land in the same slabs. It is also expected

to produce some watermarking constraint fragmentation, as mltest app frees memory

during its runtime, and it is possible that the slab from which these allocations are freed

also had some other objects present. The memory profile of this sequence is presented in

Figure 4.13.

Sequence 3: Select random interleaving, the trace simulates a random interleaving,

47

without replicating a particular pattern. It produces memory requests equivalent to start-

ing 3 applications, stopping 2, starting 3 more, stopping another 2, starting the final

2 application and in the end stopping the remaining 4. This workload is expected to

produce both alignment constraint fragmentation and watermarking constraint fragmen-

tation, since allocations and deallocations of apps are mixed. The memory profile of this

sequence is presented in Figure 4.14.

4.1.4 Expected Study Outcomes

Based on previous literature on memory allocators and our experience with the CantripOS

system, we expect the following hypotheses to hold for the results of synthetic workloads

as well as representative workloads:

H1. Best fit allocator produces smaller peak and average fragmentation

than next fit. This hypothesis is based on the idea that next fit starts by placing all

objects in a single large slab, hence alignment constrain fragmentation can be introduced as

different sized objects will mix on the same slabs, and larger watermarking fragmentation

can be introduced as allocated objects have random lifetimes. Best fit on the other hand

should try to “pack” smaller objects into smaller slabs and pack objects of the same

size together, as they are more likely to produce perfect fits. It is further motivated by

evidence from previous studies on allocators using both synthetic and representative [9]

workloads is systems without the watermarking constraint imposed by seL4, in which best

fit outperformed next fit.

H2. Untyped slabs fill up from smallest to largest for best fit, but in reverse

order for next fit. This hypothesis is based on the fact that best fit should prefer memory

blocks that fit an allocation request as closely as possible. Since untyped slabs vary a lot

in sizes, the smallest slabs will be picked first, as even big objects lead to a lot of left

over memory for large slabs, and little for small slabs. Next fit, on the other hand, tries

to allocate objects on the last successful slab. Since CantripOS sorts untyped slabs in

descending order of sizes, large slabs will receive all allocations first.

H3. Peak instruction count-driven latency of best fit allocator is smaller

than next fit. This hypothesis is based on the idea that the original implementation of

next fit allocator in CantripOS has “spiky” behaviour, due to some allocation requests

causing multiple failed object invocations (Section 3.1.2). Best fit should present a much

flatter instruction count distribution, possibly with small deviations when pre-empted or

an out of memory occurs.

H4. Average instruction count-driven latency of best fit allocator is smaller

than next fit. Similarly to H3, this hypothesis results from the “spiky” behaviour of

original next fit. Although when next fit succeeds on the first try, execution of best fit

allocation might take longer, the frequency of those failed allocations should lead to a

higher average latency for next fit.

H5. Use of best fit allocator results in higher number of untyped slab

resets. This hypothesis is based on H2 – since smaller slabs are filled up first by best fit,

48

there are fewer objects that need to be freed on that slab to reset it. Therefore, there is

a higher chance it will be reset than a larger slab used by next fit.

H6. Higher number of untyped slab resets results in lower overall fragmen-

tation. This hypothesis is based on H5 and assumes that when an untyped slab is reset

and memory is freed to the system, total fragmentation decreases. Hence, if a lot of slabs

are being reset, the fragmentation should be only spiking slightly and quickly dropping.

4.2 Results

In this section, we discuss the results of performing the experiments described in Sec-

tion 4.1. Since in the domain of memory allocation, physical time of allocations has little

meaning2, inspired by Wilson et al. [5], the plots presented in this section instead use the

total number of bytes requested as the “time” of the allocation. Because the added in-

frastructure for saving memory traces and later replaying them requires for the system to

use slightly more memory than the original binary, hence the size was fixed for all exper-

iments at 1291 KiB. The total available space for allocation in all performed experiments

is 2, 723, 584 B – approximately 2.6 MiB.

4.2.1 Synthetic Workloads – Random with Uniform Distribution

Initially, out of the 4 experiments described in Section 4.1.2, only 3 were performed with

exponentially increasing percentage chance for deallocation, in powers of 2: 16%, 32%

and 64%. Figures 4.6, 4.7 and 4.9 show memory profiles of these traces, along with

watermarking and alignment constraint, untyped slab resets and highlights when out of

memory occurred. For both 16% and 32% (Figures 4.6, 4.7), the small percentage chance

for deallocation lead to the system’s memory filling up and causing out of memory errors.

Interestingly, out of memory occurs much faster for next fit allocator than best fit (around

2.05 and 2.06 MiB of requested memory for next fit, 2.27 and 2.50 MiB for best fit),

suggesting better memory utilisation using best fit allocator. On the other hand, 64%

workload’s memory profile (Figure 4.9) is very spiky, both in terms of used bytes and

fragmentation, often dropping to zero. Such cliff behaviour between the percentages 32

and 64 led us to analyse a fourth trace, for 48% chance of deallocation (Figure 4.8). Both

the 48 and 64 percentage chance traces reach much smaller peak memory usage (approx.

0.19 MiB and 0.06 MiB) in comparison to the other two runs (approx. 1.72 MiB for 16%

run and 1.44 MiB for 32% run) and never reach an out of memory scenario.

Some hypotheses stated in Section 4.1.4 are supported by these results, the hypothesis

H1, states that best fit allocator produces smaller peak and average fragmentation than

next fit, which is confirmed just by visual inspection of these graphs: for all 4 runs both

watermarking and alignment constraint fragmentation is almost always lower for best fit.

Further, Table 4.3 shows peak and average fragmentation results for the four different

2Reasoning behind this is simple: it is not the physical time of memory requests that impacts fragmen-
tation but their ordering.

49

0.0 0.5 1.0 1.5 2.0

Bytes Requested ×106

0.0

0.5

1.0

1.5

B
yt
es

in
U
se

×106 Bytes in Use vs. Bytes Requested

0.0 0.5 1.0 1.5 2.0

Bytes Requested ×106

0.0

0.2

0.4

0.6

0.8

1.0

W
at
er
m
ar
ki
ng

C
on
s.

F
ra
gm

en
ta
ti
on

×106 Watermarking Cons. Fragmentation vs. Bytes Requested

0.0 0.5 1.0 1.5 2.0

Bytes Requested ×106

0

100000

200000

300000

400000

500000

A
lig
nm

en
t
C
on
s.

F
ra
gm

en
ta
ti
on

Alignment Cons. Fragmentation vs. Bytes Requested

Best Fit - Bytes in Use

Next Fit - Bytes in Use

Best Fit - Slab Resets

Next Fit - Slab Resets

Best Fit - Out of Memory

Next Fit - Out of Memory

Best Fit - Watermarking Con. Fragmentation

Next Fit - Watermarking Con. Fragmentation

Best Fit - Alignment Con. Fragmentation

Next Fit - Alignment Con. Fragmentation

0

5

10

15

20

25

30

S
la
b
re
se
t
co
un
t

1

Figure 4.6: Memory profile for a random uniform run.
Seed 42, no. operations: 1000, free chance: 16%.

0.0 0.5 1.0 1.5 2.0 2.5

Bytes Requested ×106

0.00

0.25

0.50

0.75

1.00

1.25

1.50

B
yt
es

in
U
se

×106 Bytes in Use vs. Bytes Requested

0.0 0.5 1.0 1.5 2.0 2.5

Bytes Requested ×106

0.00

0.25

0.50

0.75

1.00

1.25

W
at
er
m
ar
ki
ng

C
on
s.

F
ra
gm

en
ta
ti
on

×106 Watermarking Cons. Fragmentation vs. Bytes Requested

0.0 0.5 1.0 1.5 2.0 2.5

Bytes Requested ×106

0

100000

200000

300000

400000

A
lig
nm

en
t
C
on
s.

F
ra
gm

en
ta
ti
on

Alignment Cons. Fragmentation vs. Bytes Requested

Best Fit - Bytes in Use

Next Fit - Bytes in Use

Best Fit - Slab Resets

Next Fit - Slab Resets

Best Fit - Out of Memory

Next Fit - Out of Memory

Best Fit - Watermarking Con. Fragmentation

Next Fit - Watermarking Con. Fragmentation

Best Fit - Alignment Con. Fragmentation

Next Fit - Alignment Con. Fragmentation

0

10

20

30

S
la
b
re
se
t
co
un
t

1

Figure 4.7: Memory profile for a random uniform run.
Seed 42, no. operations: 1000, free chance: 32%.

runs, and for all 4 the total peak and average fragmentation is between 1.4 to 17 times

smaller. Additionally, alignment and watermarking constraint fragmentation is always

smaller for best fit when compared to next fit.

Such performance is expected based on the evident confirmation of hypothesis H5:

use of best fit allocator results in higher number of untyped slab resets, and the resulting

hypothesis H6: higher number of untyped slab resets results in lower overall fragmenta-

tion. Figures 4.6 – 4.9 show how the number of untyped slab resets (orange lines) is much

higher for all 4 traces. Table 4.4 presents the numerical values, which also confirm this.

Figures 4.10 and 4.11 display snapshots of untyped memory slabs at 25th, 50th, 75th

and 100th percentiles of synthetic random traces with 16 and 48 percentage chance for

deallocation, for both best fit allocator (solid filled in bars) and next fit (hatched bars).

The untyped slabs are sorted in descending order by size. As the traces progress, it is

clearly visible that using the best fit allocator spreads its allocations among the smallest

slabs first, before “spoiling” the larger slabs, a heuristic observed by Wilson et al. [5],

50

Metric 16% chance 32% chance 48% chance 64% chance

Allocator: best fit next fit best fit next fit best fit next fit best fit next fit

Peak fragmentation (in KiB)

watermarking: 553.80 1106.69 865.92 1267.75 282.95 785.69 36.34 72.16

alignment: 411.77 477.67 381.89 449.03 67.78 193.91 0.67 15.98

total: 951.66 1584.36 1237.80 1691.00 340.09 979.59 36.44 81.97

Average fragmentation (in KiB)

watermarking: 281.05 407.09 442.09 726.41 79.02 306.84 0.42 6.03

alignment: 231.73 299.89 184.08 267.21 11.03 80.35 0.02 1.76

total: 512.79 706.98 626.17 993.61 90.05 387.19 0.45 7.79

Table 4.3: Peak and average memory fragmentation for synthetic randomly distributed
traces, with different percentage chances for deallocation. Total is computed as the
peak/average of the sum of both fragmentation types (not the sum of the peak/aver-
age values). Highest value in each category is bolded for best and next fit.

mentioned in Section 2.1.1 on sequential fits. Next fit, due to a descending ordering

of slabs by size, starts by allocating objects on the bigger slabs and, as watermarking

fragmentation and occupied space on the slabs fills up, “spills over” to the smaller slabs.

This supports the hypothesis H2, stating that untyped slabs fill smallest to largest for

best fit, and largest to smallest for next fit.

Such behaviour could also be one of the reasons for best fit allocator producing lower

fragmentation for synthetic traces. Deallocating an object on a smaller slab has a higher

chance of resetting the slab it is on, as slabs are only reset when all objects in a slab are

removed and smaller slabs can fit fewer objects. The increased number of resets in turn

mean any unusable memory due to fragmentation is returned to the untyped objects and

once again available for use by the system.

Metric 16% chance 32% chance 48% chance 64% chance

Allocator: best fit next fit best fit next fit best fit next fit best fit next fit

Number of slab resets

total: 30 23 37 24 158 13 422 238

per 100 allocs: 3.55 2.71 5.17 3.35 29.81 2.45 84.06 47.41

Table 4.4: Number of slab resets and for synthetic randomly distributed traces. Presents
both the total number and average number of slab resets per 100 allocation requests for
both best and next fit runs.

4.2.2 Representative Workloads – Standalone Application Traces

Traces of hello, timer and fibonacci apps presented the same allocation patterns, albeit

with different sized objects, types and counts, always allocating memory at initialisation.

The only app which deallocates memory before exiting is mltest, as described in Sec-

tion 4.1.3. We expected these allocation patterns when originally inspecting all the cur-

rently available CantripOS applications. Further, we believed that each application would

have no watermarking constraint fragmentation, and this is indeed visible in Figures 4.2

51

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Bytes Requested ×106

0

50000

100000

150000

200000

B
yt
es

in
U
se

Bytes in Use vs. Bytes Requested

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Bytes Requested ×106

0

200000

400000

600000

800000

W
at
er
m
ar
ki
ng

C
on
s.

F
ra
gm

en
ta
ti
on

Watermarking Cons. Fragmentation vs. Bytes Requested

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Bytes Requested ×106

0

50000

100000

150000

200000

A
lig
nm

en
t
C
on
s.

F
ra
gm

en
ta
ti
on

Alignment Cons. Fragmentation vs. Bytes Requested

Best Fit - Bytes in Use

Next Fit - Bytes in Use

Best Fit - Slab Resets

Next Fit - Slab Resets

Best Fit - Watermarking Con. Fragmentation

Next Fit - Watermarking Con. Fragmentation

Best Fit - Alignment Con. Fragmentation

Next Fit - Alignment Con. Fragmentation

0

25

50

75

100

125

150

S
la
b
re
se
t
co
un
t

1

Figure 4.8: Memory profile for a random uniform run.
Seed 42, no. operations: 1000, free chance: 48%.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Bytes Requested ×106

0

20000

40000

60000

B
yt
es

in
U
se

Bytes in Use vs. Bytes Requested

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Bytes Requested ×106

0

20000

40000

60000

W
at
er
m
ar
ki
ng

C
on
s.

F
ra
gm

en
ta
ti
on

Watermarking Cons. Fragmentation vs. Bytes Requested

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Bytes Requested ×106

0

5000

10000

15000

A
lig
nm

en
t
C
on
s.

F
ra
gm

en
ta
ti
on

Alignment Cons. Fragmentation vs. Bytes Requested

Best Fit - Bytes in Use

Next Fit - Bytes in Use

Best Fit - Slab Resets

Next Fit - Slab Resets

Best Fit - Watermarking Con. Fragmentation

Next Fit - Watermarking Con. Fragmentation

Best Fit - Alignment Con. Fragmentation

Next Fit - Alignment Con. Fragmentation

0

100

200

300

400

S
la
b
re
se
t
co
un
t

1

Figure 4.9: Memory profile for a random uniform run.
Seed 42, no. operations: 1000, free chance: 64%.

– 4.5.

We also suspected that although next fit should produce some alignment constraint

fragmentation, best fit’s policy would manage to pack all objects of different sizes into

different untyped slabs, resulting in no such fragmentation. The explanation for appli-

cation traces allocated with next fit producing some alignment constraint fragmentation

is simple: Since all applications in CantripOS run in separate seL4 threads, they require

as a bare minimum: a CNode to hold its capabilities in, a Thread Control Block object,

Scheduling context object, Page table objects to map physical pages to virtual and finally

physical page objects to hold user space memory. Each of these objects have different sizes,

so when they are allocated contiguously on the same slab, the seL4 microkernel needs to

adjust their addresses of allocation to be object-size aligned, fragmenting the memory for

each mismatch.

To our surprise, the assumption for best fit producing no alignment constraint-caused

fragmentation held for all but the simplest application: hello. This app created 192 bytes

52

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Slab

0

100000

200000

300000

400000

500000

M
em

or
y

Memory slab status after 250 alloc/dealloc operations

16 17 18 19 20 21 22
0

4375

8750

13125

17500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Slab

0

100000

200000

300000

400000

500000

M
em

or
y

Memory slab status after 500 alloc/dealloc operations

16 17 18 19 20 21 22
0

4375

8750

13125

17500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Slab

0

100000

200000

300000

400000

500000

M
em

or
y

Memory slab status after 750 alloc/dealloc operations

16 17 18 19 20 21 22
0

4375

8750

13125

17500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Slab

0

100000

200000

300000

400000

500000

M
em

or
y

Memory slab status after 1000 alloc/dealloc operations

16 17 18 19 20 21 22
0

4375

8750

13125

17500

Best Fit - Available space

Next Fit - Available space

Best Fit - Used memory

Next Fit - Used memory

Best Fit - Alignment cons. fragmentation

Next Fit - Alignment cons. fragmentation

Best Fit - Watermarking cons. fragmentation

Next Fit - Watermarking cons. fragmentation

1
Figure 4.10: Per-slab statistics for a random uniform run. Seed: 42, no. operations: 1000,
free chance: 16%.

53

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Slab

0

100000

200000

300000

400000

500000

M
em

or
y

Memory slab status after 250 alloc/dealloc operations

16 17 18 19 20 21 22
0

4375

8750

13125

17500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Slab

0

100000

200000

300000

400000

500000

M
em

or
y

Memory slab status after 500 alloc/dealloc operations

16 17 18 19 20 21 22
0

4375

8750

13125

17500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Slab

0

100000

200000

300000

400000

500000

M
em

or
y

Memory slab status after 750 alloc/dealloc operations

16 17 18 19 20 21 22
0

4375

8750

13125

17500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Slab

0

100000

200000

300000

400000

500000

M
em

or
y

Memory slab status after 1000 alloc/dealloc operations

16 17 18 19 20 21 22
0

4375

8750

13125

17500

Best Fit - Available space

Next Fit - Available space

Best Fit - Used memory

Next Fit - Used memory

Best Fit - Alignment cons. fragmentation

Next Fit - Alignment cons. fragmentation

Best Fit - Watermarking cons. fragmentation

Next Fit - Watermarking cons. fragmentation

1
Figure 4.11: Per-slab statistics for a random uniform run. Seed: 42, no. operations: 1000,
free chance: 48%.

54

of alignment constraint fragmentation towards the beginning of its allocation. The trace

for hello starts by allocating a single physical page, which is placed on a single 4096

byte slab. The reader might find it helpful to look at the system slabs on Figure 4.10

or 4.11 – that would be slab 19. Afterwards, a CNode object (seL4_CapTableObject)

with 4 slots is allocated, 64 bytes in size. This object is placed in the smallest possible

slab of 512 bytes (slab 22), leaving 448 bytes free on the slab. The next allocation is

a TCB object (seL4_TCBObject) of size 256 bytes for RISC-V 32-bit architecture. This

allocation is placed on the next smallest slab, of size 1024 bytes (slab 21), leaving 768

bytes free. Finally, a schedule context object (seL4_SchedContextObject), of size 256

bytes, is requested. If placed on slab 21, it wouldn’t need to be aligned as the previously

placed TCB object is also of size 256, and the resulting “left-over” memory would be

768 − 256 = 512 bytes. However, if the object is placed on slab 22 instead, since there is

a 64 byte object present on the slab, the watermark of the slab is adjusted to 256 bytes

for alignment, and there are 0 bytes of “left-over” memory. This is smaller than the 512

bytes left over on slab 21, hence best fit allocator places the object here. The alignment

constraint fragmentation for this workflow comes exactly from this allocation: adjusting

the watermark requires wasting 256 − 64 = 192 bytes of memory.

Although the above example shows that even for simple workloads, best fit mechanism

can still produce some fragmentation, it is much better when compared to next fit. How-

ever, it seems that taking into account memory wasted due to alignment when determining

the best slab could be investigated (although even for this simple case, if memory lost due

to alignment would be counted towards “left-over” memory for best fit policy, the exact

same allocation pattern would occur).

Concluding, the results for standalone application traces, support the hypothesis of

best fit allocator producing smaller peak and average fragmentation than next fit (H1).

4.2.3 Representative Workloads – Sequential Application Trace Inter-

leaving

These set of traces were designed in hope of achieving more challenging allocation request

sequences while remaining in the domain of representative workloads. The 3 sequences

introduced in Section 4.1.3 are visible in Figures 4.12, 4.13 and 4.14.

The first trace is a sequence of 4 applications (hello, timer, mltest and fibonacci)

being started then stopped one after another, repeated twice. This workload forms mul-

tiplepeaks of memory usage, but do not show the same fragmentation issues as described

in earlier work [5], as after each peak memory is completely deallocated. The expected

result is for the system to behave exactly the same as if the memory profile graphs (both

memory usage and fragmentation) in Figures 4.2 – 4.4 were connected together, in a sin-

gle, larger graph. This exact series of events is presented in Figure 4.12 (except for slab

resets accumulating over time). Although trivial, such behaviour is very much expected

of a deployed CantripOS system: a compute job is requested from the system (e.g. via

an interrupt on an external sensor), memory is allocated for an application to handle the

55

interrupt, an application runs and exits, deallocating all of its memory, system waits for

the next request. With such insight into the behaviour of the system, it is simple to no-

tice that the only possibility for this trace to differ from multiple standalone application

traces “chained” together is if the memory bookkeeping implemented in Section 3.3.4 or

the implementation of the best fit allocator (Section 3.4) is incorrect.

0.0 0.5 1.0 1.5 2.0 2.5

Bytes Requested ×106

0.0

0.2

0.4

0.6

0.8

1.0

1.2

B
yt
es

in
U
se

×106 Bytes in Use vs. Bytes Requested

0.0 0.5 1.0 1.5 2.0 2.5

Bytes Requested ×106

−0.04

−0.02

0.00

0.02

0.04

W
at
er
m
ar
ki
ng

C
on
s.

F
ra
gm

en
ta
ti
on

Watermarking Cons. Fragmentation vs. Bytes Requested

0.0 0.5 1.0 1.5 2.0 2.5

Bytes Requested ×106

0

1000

2000

3000

4000

5000

6000

A
lig
nm

en
t
C
on
s.

F
ra
gm

en
ta
ti
on

Alignment Cons. Fragmentation vs. Bytes Requested

Best Fit - Bytes in Use

Next Fit - Bytes in Use

Best Fit - Slab Resets

Next Fit - Slab Resets

Best Fit - Watermarking Con. Fragmentation

Next Fit - Watermarking Con. Fragmentation

Best Fit - Alignment Con. Fragmentation

Next Fit - Alignment Con. Fragmentation

0

20

40

60

80

S
la
b
re
se
t
co
un
t

1

Figure 4.12: Memory profile of sequential app inter-
leaving. Sequence 1: Each app started and stopped
one after the other.

0.0 0.5 1.0 1.5 2.0 2.5

Bytes Requested ×106

0.0

0.5

1.0

1.5

B
yt
es

in
U
se

×106 Bytes in Use vs. Bytes Requested

0.0 0.5 1.0 1.5 2.0 2.5

Bytes Requested ×106

0

50000

100000

150000

200000
W
at
er
m
ar
ki
ng

C
on
s.

F
ra
gm

en
ta
ti
on

Watermarking Cons. Fragmentation vs. Bytes Requested

0.0 0.5 1.0 1.5 2.0 2.5

Bytes Requested ×106

0

10000

20000

30000

40000

50000

A
lig
nm

en
t
C
on
s.

F
ra
gm

en
ta
ti
on

Alignment Cons. Fragmentation vs. Bytes Requested

Best Fit - Bytes in Use

Next Fit - Bytes in Use

Best Fit - Slab Resets

Next Fit - Slab Resets

Best Fit - Watermarking Con. Fragmentation

Next Fit - Watermarking Con. Fragmentation

Best Fit - Alignment Con. Fragmentation

Next Fit - Alignment Con. Fragmentation

0

5

10

15

20

25

30

S
la
b
re
se
t
co
un
t

1

Figure 4.13: Memory profile of sequential app in-
terleaving. Sequence 2: Ramp behaviour, each app
started, then all app stopped.

The second trace, referred to as a “large ramp” in Section 4.1.3, allocates (starts)

applications in the same order as sequence 1, but deallocates (stops) at the end of all

allocations. It is characterised by 3 spikes in allocation, which are caused by deallocations

happening at runtime by the mltest application – when the application frees the loaded

model from memory and the CNode holding its physical page objects. These events of

mltest runtime deallocation can also be identified as spikes in the alignment constraint

fragmentation plot in Figure 4.13, happening around 1.3 MiB of requested memory for best

fit and 2.7 MiB for next fit. Each physical page object for RISC-V 32-bit is 4096 bytes in

size, and the CNode holding these objects is 8192 bytes in size. The drop in fragmentation

56

means that the allocator placed both the page objects of mltest’s model and its CNode

on the same untyped slab in such a manner that the untyped slab’s watermark needed to

be aligned to 2-page (8192 bytes) size, wasting 4096 bytes of memory – the exact size of

the both of the spikes. Of course, it is possible that this fragmentation is not introduced in

the first place, if the page objects are allocated to a 2-page aligned address and the CNode

is allocated in that slab, or if the CNode is allocated in a different slab. However, this

event is a small confirmation that even though best and next fit do not attempt to place

objects with the same lifetimes together, they still end up doing that in some cases (which

is a good thing, as it minimises fragmentation [5]). Notably, this trace is an exception to

hypothesis H5, stating that best fit allocator results in a higher number of untyped slab

resets, and H6, which states that a higher number of untyped slab resets results in a lower

fragmentation. It holds for the majority of the trace, but at around 2.7 MiB of requested

memory, best fit allocator run is at 12 slab resets and 28.0 KiB total fragmentation, when

next fit allocator run is at 18 and 43.9 KiB total fragmentation. Although surprising, it

means that both hypotheses H5 and H6 cannot be taken as conjectures for all possible

workloads, but as they hold for all other workloads explored in this work they shouldn’t

be completely disregarded.

The third trace is a random sample from the possible space of interleavings for 8

applications, each with 2 possible events, and its memory profile is presented in Figure 4.14.

It is considered more challenging than the previous two, as it introduces more situations

when memory is allocated for some applications and some is deallocated but never to a

completely empty system state, leading to more possibilities of introducing watermarking

constraint fragmentation. This indeed is visible for the next fit allocator, and tiny amounts

of memory is also being lost due to watermarking constraint fragmentation for the best

fit allocator.

Metric Sequence 1 Sequence 2 Sequence 3

Allocator: best fit next fit best fit next fit best fit next fit

Peak fragmentation (in KiB)

watermarking: 0.00 0.00 76.31 212.25 48.50 309.56

alignment: 0.19 5.75 28.38 46.88 13.94 34.12

total: 0.19 5.75 99.94 230.69 62.00 334.00

Average fragmentation (in KiB)

watermarking: 0.00 0.00 0.24 1.03 1.01 63.99

alignment: 0.00 4.81 17.73 29.27 10.80 20.88

total: 0.00 4.81 17.96 30.29 11.81 84.87

Table 4.5: Peak and average memory fragmentation for representative traces of sequential
application interleavings. Total is computed as the peak/average of the sum of both
fragmentation types (not the sum of the peak/average values). Highest value in each
category is bolded for best and next fit.

Overall, traces of sequential application interleavings show that for these type of work-

loads best fit is far superior in terms of memory fragmentation (both due to the water-

marking and alignment constraint). Table 4.5 shows fragmentation results for all three

57

workloads, similarly to the results for synthetic workloads, best fit allocator always results

in a lower peak and average fragmentation3 when compared to next fit allocator. This

result was stated by hypothesis H1 and further supports it. Further, for both traces 1 and

3 the number of untyped slabs was always lower for next fit allocator runs than for best fit

allocator, but there was a single instance when this was not true for sequence 2. Although

this means that hypothesis H5 and H6 do not always hold – it is not always the case

that using best fit allocator results in more untyped slab resets, and it is not always the

case that more untyped slab resets result in lower fragmentation, there is a lot of evidence

that these two values are correlated. Further studies of the connection between these two

phenomena are required to confirm this.

3Except for sequence 1, where watermarking fragmentation was never present for either allocators.

0.0 0.5 1.0 1.5 2.0 2.5

Bytes Requested ×106

0.00

0.25

0.50

0.75

1.00

1.25

B
yt
es

in
U
se

×106 Bytes in Use vs. Bytes Requested

0.0 0.5 1.0 1.5 2.0 2.5

Bytes Requested ×106

0

50000

100000

150000

200000

250000

300000

W
at
er
m
ar
ki
ng

C
on
s.

F
ra
gm

en
ta
ti
on

Watermarking Cons. Fragmentation vs. Bytes Requested

0.0 0.5 1.0 1.5 2.0 2.5

Bytes Requested ×106

0

10000

20000

30000

A
lig
nm

en
t
C
on
s.

F
ra
gm

en
ta
ti
on

Alignment Cons. Fragmentation vs. Bytes Requested

Best Fit - Bytes in Use

Next Fit - Bytes in Use

Best Fit - Slab Resets

Next Fit - Slab Resets

Best Fit - Watermarking Con. Fragmentation

Next Fit - Watermarking Con. Fragmentation

Best Fit - Alignment Con. Fragmentation

Next Fit - Alignment Con. Fragmentation

0

10

20

30

40

S
la
b
re
se
t
co
un
t

1

Figure 4.14: Memory profile of sequential app inter-
leaving. Sequence 3: 3 apps started, 2 apps stopped,
3 apps started, 2 apps stopped, 2 apps started, 4 apps
stopped.

58

4.2.4 Allocation Latency Evaluation

For measuring allocation latency, we used the exact same synthetic workloads as described

in Section 4.1.2. Figures 4.15 and 4.16 show three plots each, similar to the earlier memory

profile plots, showing results for both next-fit and best-fit allocator runs. The top plot

displaying the bytes in use vs total bytes requested, representing the actual workload. The

middle plot shows an instruction count vs bytes requested, the brown solid line being the

instruction count per allocation for the best-fit allocator and the purple dashed line – for

the next-fit allocator. Additionally, if out of memory errors occurred, they are marked on

this plot as red “X”’s for best-fit, and red pluses for next-fit. For next-fit we additionally

highlighted when seL4_Untyped_Retype invocations failed with orange circles, scaled in

size with the amount of failed invocations. The bottom plot is a “control” plot, displaying

the instruction count per free request (solid grey line for best-fit, dashed orange for next-

fit). This plot is expected to be closely aligned for both allocators. Both them middle and

the bottom plots are in log scale.

While analysing these results, we came to the unfortunate conclusion that there is some

interference corrupting our results, causing large spikes in retired instruction counts. For

next-fit these seem to positively correlate with failed untyped-retype invocations, which

was expected (every spike in retired instruction count corresponds to at least one failed

untyped-retype invocation). However, such spikes are also present for both presented

best-fit runs. In order to try rand figure out the root cause of these spikes, we attempted

exploring whether this is linked to either the type of requested object, or the number of

slabs considered during allocation4. Unfortunately, none of these attempts uncovered the

root cause of these spikes.

We therefore decided against drawing conclusions based on this dirty data to support

or disprove our hypothesis, and propose that further studies to identify the cause of these

spikes are necessary.

The unexplored possibilities behind these spikes include: pre-emption of allocation

system calls introducing large delay in the kernel, pre-emption of allocation requests in

the user-space (e.g. a different thread is getting scheduled while we are measuring the

instruction count), or the untyped slab resets cause subsequent allocation requests to be

much smaller.

4Best-fit performs an exhaustive search calculating number of left over bytes for each slab on every
allocation, unless a perfect fit is found. We hoped that maybe these perfect fits are more often and the
spikes only occur when all/majority of slabs are “visited”.

59

0.0 0.5 1.0 1.5 2.0

Bytes Requested ×106

0.0

0.5

1.0

1.5

B
yt
es

in
U
se

×106 Bytes in Use vs. Bytes Requested

0.0 0.5 1.0 1.5 2.0

Bytes Requested ×106

104

105

In
st
ru
ct
io
n
C
ou
nt

p
er

A
llo
c

Instruction Count per Allocation vs. Bytes Requested

0.0 0.5 1.0 1.5 2.0

Bytes Requested ×106

103

104

105

In
st
ru
ct
io
n
C
ou
nt

p
er

F
re
e

Instruction Count per Free vs. Bytes Requested

Best Fit - Bytes in Use

Next Fit - Bytes in Use

Best Fit - Instruction Count per Allocation

Best Fit - Out of Memory

Next Fit - Instruction Count per Allocation

Next Fit - Failed untyped retype invocation

Next Fit - Out of Memory

Best Fit - Instruction count per Free

Next Fit - Instruction Count per Free

1

Figure 4.15: Latency of allocation and free requests for
random uniform run. Seed 42, no. operations 1000,
free chance: 16%.

0.0 0.5 1.0 1.5 2.0 2.5

Bytes Requested ×106

0.00

0.25

0.50

0.75

1.00

1.25

1.50

B
yt
es

in
U
se

×106 Bytes in Use vs. Bytes Requested

0.0 0.5 1.0 1.5 2.0 2.5

Bytes Requested ×106

104

105

In
st
ru
ct
io
n
C
ou
nt

p
er

A
llo
c

Instruction Count per Allocation vs. Bytes Requested

0.0 0.5 1.0 1.5 2.0 2.5

Bytes Requested ×106

103

104

105

In
st
ru
ct
io
n
C
ou
nt

p
er

F
re
e

Instruction Count per Free vs. Bytes Requested

Best Fit - Bytes in Use

Next Fit - Bytes in Use

Best Fit - Instruction Count per Allocation

Best Fit - Out of Memory

Next Fit - Instruction Count per Allocation

Next Fit - Failed untyped retype invocation

Next Fit - Out of Memory

Best Fit - Instruction count per Free

Next Fit - Instruction Count per Free

1

Figure 4.16: Latency of allocation and free requests for
random uniform run. Seed 42, no. operations 1000,
free chance: 32%.

60

Chapter 5

Conclusions & Future Work

5.1 Conclusions

We have successfully managed to validate or disprove the majority of the hypotheses stated

in Section 4.1.4. Listed below:

H1. Best fit allocator produces smaller peak and average fragmentation

than next fit. For all workloads both in the synthetic and representative category,

hypothesis H1 held.

H2. Untyped slabs fill up from smallest to largest for best fit, but in reverse

order for next fit. The results from synthetic random workloads have shown that this

hypothesis indeed holds.

H3. Peak instruction count-driven latency of best fit allocator is smaller

than next fit and H5. Use of best fit allocator results in higher number of

untyped slab resets. As we did not manage to uncover the cause of sudden increases in

retired instruction counts for best-fit allocations, these two hypotheses remain unverified.

Further studies in the directions proposed in Section 4.2.4 are required.

H5. Use of best fit allocator results in higher number of untyped slab resets

and H6. Higher number of untyped slab resets results in lower overall frag-

mentation. For all synthetic workloads these hypotheses held, showing a clear correlation

between number of untyped slab resets and lower overall fragmentation. For representa-

tive workloads, there was a single instance in time when next-fit allocator outperformed

the best-fit allocator in terms of number of untyped slab resets.

We can confidently state that we have successfully met the goals of this project stated

in Section 1.3:

Improving bookkeeping of memory in the CantripOS domain. The proposed

modification to the seL4 microkernel and CantripOS operating system accurately tracks all

memory allocations and deallocation in the system at a per-slab granularity. It has been

successfully used to evaluate the performance of the original next-fit memory allocator

and compare it against an implementation of best-fit memory allocator.

Eliminating failed allocation system calls when allocating memory in Cantri-

pOS. The implementation of best-fit memory allocator resulted in no failed untyped-

61

retype object invocations for all kinds of workloads. This could easily be extended for the

original memory allocator.

Reducing memory fragmentation of the memory allocator of CantripOS. By

implementing and evaluating the best-fit allocator against the original next-fit allocator, we

have shown the hypothesis H1 to be true. Therefore, along with the seL4 microkernel and

CantripOS modifications, a best-fit allocator should result in lower memory fragmentation

when deployed in the CantripOS system.

5.2 Future Work

Throughout the duration of this project, CantripOS and seL4 have proven to be exciting

systems with incredible potential. We aim to continue working on this system, hopefully

starting with upstreaming the results of this work to the public Open Se Cura repository.

Future directions of this project should additionally include: reevaluating the latency of

memory allocations, either by identifying the cause of “spikes” in retired instruction counts

for best-fit allocator or by using a different metric when the target hardware of the system

is more widely available. With access to hardware, the rest of the experiments could also

be repeated to verify whether the emulated results are accurate. Furthermore, thanks to

the contributions of this thesis, different memory allocators could be implemented and

evaluated. For example, a targeted heuristic allocator tailored for seL4 and CantripOS

could be designed and compared against the best-fit allocator.

Another interesting direction would be exploring how an allocator would behave with

the watermarking constraint lifted, but all other constraints of seL4 and CantripOS en-

forced. This could be achieved, e.g., by creating a simulated allocator. seL4 previously

had an experimental branch, which allowed for such memory allocation, but was never for-

mally verified. If such a simulated allocator resulted in much lower fragmentation, maybe

it would be worth revisiting this experimental branch.

62

Bibliography

[1] G. Heiser, “The seL4 microkernel – an introduction,” seL4 Foundation Whitepaper,

May 2020. [Online]. Available: https://sel4.systems/About/seL4-whitepaper.pdf

[2] B. Randell, “A note on storage fragmentation and program segmentation,”

Commun. ACM, vol. 12, no. 7, p. 365–ff., jul 1969. [Online]. Available:

https://doi.org/10.1145/363156.363158

[3] G. Heiser, “How to (and how not to) use seL4 IPC,” microkernel-

dude.org, mar 2019. [Online]. Available: https://microkerneldude.org/2019/03/

07/how-to-and-how-not-to-use-sel4-ipc/

[4] D. Elkaduwe, P. Derrin, and K. Elphinstone, “Kernel design for isolation

and assurance of physical memory,” in Proceedings of the 1st Workshop on

Isolation and Integration in Embedded Systems, ser. IIES ’08. New York, NY,

USA: Association for Computing Machinery, 2008, p. 35–40. [Online]. Available:

https://doi.org/10.1145/1435458.1435465

[5] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic Storage Allocation:

A Survey and Critical Review,” in Proceedings of the International Workshop on

Memory Management, ser. IWMM ’95. Berlin, Heidelberg: Springer-Verlag, 1995,

p. 1–116. [Online]. Available: https://dl.acm.org/doi/10.5555/645647.664690

[6] D. E. Knuth, The art of computer programming, volume 1 (3rd ed.): fundamental

algorithms. USA: Addison Wesley Longman Publishing Co., Inc., 1997, pp. 435–

452.

[7] T. A. Standish, Data Structure Techniques. USA: Addison-Wesley Longman Pub-

lishing Co., Inc., 1980, pp. 249–274.

[8] B. Karp, “Dynamic memory allocation in C,” UCL, COMP0019 Computer Systems,

jan 2023, [PDF slides]. [Online]. Available: http://www0.cs.ucl.ac.uk/staff/B.Karp/

0019/s2023/lectures/0019-lecture6-mem-alloc.pdf

[9] M. S. Johnstone and P. R. Wilson, “The memory fragmentation problem: solved?”

in Proceedings of the 1st International Symposium on Memory Management, ser.

ISMM ’98. New York, NY, USA: Association for Computing Machinery, oct 1998,

p. 26–36. [Online]. Available: https://doi.org/10.1145/286860.286864

63

https://sel4.systems/About/seL4-whitepaper.pdf
https://doi.org/10.1145/363156.363158
https://microkerneldude.org/2019/03/07/how-to-and-how-not-to-use-sel4-ipc/
https://microkerneldude.org/2019/03/07/how-to-and-how-not-to-use-sel4-ipc/
https://doi.org/10.1145/1435458.1435465
https://dl.acm.org/doi/10.5555/645647.664690
http://www0.cs.ucl.ac.uk/staff/B.Karp/0019/s2023/lectures/0019-lecture6-mem-alloc.pdf
http://www0.cs.ucl.ac.uk/staff/B.Karp/0019/s2023/lectures/0019-lecture6-mem-alloc.pdf
https://doi.org/10.1145/286860.286864

[10] I. P. Page, “Optimal Fit of Arbitrary Sized Segments,” The Computer Journal, vol. 25,

no. 1, pp. 32–33, 02 1982. [Online]. Available: https://doi.org/10.1093/comjnl/25.1.32

[11] M. Gorman, Understanding the Linux Virtual Memory Manager. USA: Prentice

Hall PTR, 2004, chapter: 6. [Online]. Available: https://www.kernel.org/doc/

gorman/html/understand/

[12] K. C. Knowlton, “A fast storage allocator,” Commun. ACM, vol. 8, no. 10, p.

623–624, oct 1965. [Online]. Available: https://doi.org/10.1145/365628.365655

[13] J. L. Peterson and T. A. Norman, “Buddy systems,” Commun. ACM, vol. 20, no. 6,

p. 421–431, jun 1977. [Online]. Available: https://doi.org/10.1145/359605.359626

[14] D. S. Hirschberg, “A class of dynamic memory allocation algorithms,”

Commun. ACM, vol. 16, no. 10, p. 615–618, oct 1973. [Online]. Available:

https://doi.org/10.1145/362375.362392

[15] W. Burton, “A buddy system variation for disk storage allocation,” Commun.

ACM, vol. 19, no. 7, p. 416–417, jul 1976. [Online]. Available: https:

//doi.org/10.1145/360248.360259

[16] J. M. Robson, “An estimate of the store size necessary for dynamic storage

allocation,” J. ACM, vol. 18, no. 3, p. 416–423, jul 1971. [Online]. Available:

https://doi.org/10.1145/321650.321658

[17] ——, “Bounds for some functions concerning dynamic storage allocation,”

J. ACM, vol. 21, no. 3, p. 491–499, jul 1974. [Online]. Available: https:

//doi.org/10.1145/321832.321846

[18] ——, “Worst case fragmentation of first fit and best fit storage allocation strategies,”

The Computer Journal, vol. 20, no. 3, pp. 242–244, jan 1977. [Online]. Available:

https://doi.org/10.1093/comjnl/20.3.242

[19] J. E. Shore, “On the external storage fragmentation produced by first-fit and best-fit

allocation strategies,” Commun. ACM, vol. 18, no. 8, p. 433–440, aug 1975. [Online].

Available: https://doi.org/10.1145/360933.360949

[20] C. Lameter, “Slub: The unqueued slab allocator v6,” LWN.net, mar 2007. [Online].

Available: https://lwn.net/Articles/229096/

[21] J. Bonwick, “The slab allocator: An Object-Caching kernel,”

in USENIX Summer 1994 Technical Conference (USENIX Sum-

mer 1994 Technical Conference). Boston, MA: USENIX Associa-

tion, Jun. 1994. [Online]. Available: https://www.usenix.org/conference/

usenix-summer-1994-technical-conference/slab-allocator-object-caching-kernel

64

https://doi.org/10.1093/comjnl/25.1.32
https://www.kernel.org/doc/gorman/html/understand/
https://www.kernel.org/doc/gorman/html/understand/
https://doi.org/10.1145/365628.365655
https://doi.org/10.1145/359605.359626
https://doi.org/10.1145/362375.362392
https://doi.org/10.1145/360248.360259
https://doi.org/10.1145/360248.360259
https://doi.org/10.1145/321650.321658
https://doi.org/10.1145/321832.321846
https://doi.org/10.1145/321832.321846
https://doi.org/10.1093/comjnl/20.3.242
https://doi.org/10.1145/360933.360949
https://lwn.net/Articles/229096/
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/slab-allocator-object-caching-kernel
https://www.usenix.org/conference/usenix-summer-1994-technical-conference/slab-allocator-object-caching-kernel

[22] J. Bonwick and J. Adams, “Magazines and vmem: Extending the slab allocator to

many CPUs and arbitrary resources,” in 2001 USENIX Annual Technical Conference

(USENIX ATC 01). Boston, MA: USENIX Association, Jun. 2001. [Online]. Avail-

able: https://www.usenix.org/conference/2001-usenix-annual-technical-conference/

magazines-and-vmem-extending-slab-allocator-many

[23] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,

K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood,

“seL4: formal verification of an OS kernel,” in Proceedings of the ACM SIGOPS

22nd Symposium on Operating Systems Principles, ser. SOSP ’09. New York, NY,

USA: Association for Computing Machinery, 2009, p. 207–220. [Online]. Available:

https://doi.org/10.1145/1629575.1629596

[24] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski,

and G. Heiser, “Comprehensive formal verification of an OS microkernel,”

ACM Trans. Comput. Syst., vol. 32, no. 1, feb 2014. [Online]. Available:

https://doi.org/10.1145/2560537

[25] Trustworthy Systems Team, Data61, “seL4 reference manual version 12.1.0,” jun

2021. [Online]. Available: https://sel4.systems/Info/Docs/seL4-manual-12.1.0.pdf

[26] seL4 Foundation, “seL4 microkernel source code,” GitHub repos-

itory, 2024, [file: RISC-V 32-bit constants.h]. [Online]. Available:

https://github.com/seL4/seL4/blob/410b464c275c114cc70801e9aab11ea3eced21e9/

libsel4/sel4 arch include/riscv32/sel4/sel4 arch/constants.h#L20C1-L36C35

[27] S. J. Leffler, J. Tate-Gans, and Scott, “Announcing KataOS and Spar-

row,” oct 2022. [Online]. Available: https://opensource.googleblog.com/2022/10/

announcing-kataos-and-sparrow.html

[28] K. Yick, “Project Open Se Cura Open Source Announcement,”

nov 2023. [Online]. Available: https://opensource.googleblog.com/2023/11/

project-open-se-cura-open-source-announcement.html

[29] Antmicro, Renode version 1.15 manual, 2024. [Online]. Available: https:

//renode.readthedocs.io/en/latest/

[30] Google Open Source, “Open Se Cura Project source code,” Git repositories, 2024.

[Online]. Available: https://opensecura.googlesource.com

[31] The Rust Programming Language, “The Rustonomicon,” may 2024, [Book is

work-in-progress]. [Online]. Available: https://doc.rust-lang.org/stable/nomicon/

ownership.html

[32] seL4 Foundation, “camkes-tool source code,” GitHub repository fork, 2024, [Note:

repository not anonymised]. [Online]. Available: https://github.com/Willmish/

camkes-tool/tree/willmish/visualCAmkES bump python3

65

https://www.usenix.org/conference/2001-usenix-annual-technical-conference/magazines-and-vmem-extending-slab-allocator-many
https://www.usenix.org/conference/2001-usenix-annual-technical-conference/magazines-and-vmem-extending-slab-allocator-many
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/2560537
https://sel4.systems/Info/Docs/seL4-manual-12.1.0.pdf
https://github.com/seL4/seL4/blob/410b464c275c114cc70801e9aab11ea3eced21e9/libsel4/sel4_arch_include/riscv32/sel4/sel4_arch/constants.h#L20C1-L36C35
https://github.com/seL4/seL4/blob/410b464c275c114cc70801e9aab11ea3eced21e9/libsel4/sel4_arch_include/riscv32/sel4/sel4_arch/constants.h#L20C1-L36C35
https://opensource.googleblog.com/2022/10/announcing-kataos-and-sparrow.html
https://opensource.googleblog.com/2022/10/announcing-kataos-and-sparrow.html
https://opensource.googleblog.com/2023/11/project-open-se-cura-open-source-announcement.html
https://opensource.googleblog.com/2023/11/project-open-se-cura-open-source-announcement.html
https://renode.readthedocs.io/en/latest/
https://renode.readthedocs.io/en/latest/
https://opensecura.googlesource.com
https://doc.rust-lang.org/stable/nomicon/ownership.html
https://doc.rust-lang.org/stable/nomicon/ownership.html
https://github.com/Willmish/camkes-tool/tree/willmish/visualCAmkES_bump_python3
https://github.com/Willmish/camkes-tool/tree/willmish/visualCAmkES_bump_python3

[33] I. Kuz, Y. Liu, I. Gorton, and G. Heiser, “Camkes: A component model

for secure microkernel-based embedded systems,” Journal of Systems and

Software, vol. 80, no. 5, pp. 687–699, 2007, Component-Based Software

Engineering of Trustworthy Embedded Systems. [Online]. Available: https:

//www.sciencedirect.com/science/article/pii/S016412120600224X

[34] seL4 Foundation, “rust-sel4 source code,” GitHub repository, 2024. [Online].

Available: https://github.com/seL4/rust-sel4

[35] ——, “seL4 microkernel source code,” GitHub repository, 2024. [Online]. Available:

https://github.com/seL4/seL4

[36] J. Liedtke, “On µ-kernel construction,” in Proceedings of the Fifteenth ACM

Symposium on Operating Systems Principles, ser. SOSP ’95. New York, NY,

USA: Association for Computing Machinery, 1995, p. 237–250. [Online]. Available:

https://doi.org/10.1145/224056.224075

[37] The Rust Programming Language, “smallvec crate,” 2024. [Online]. Available:

https://docs.rs/smallvec/latest/smallvec

[38] S. J. Leffler, personal communication, nov 2023.

[39] Google Open Source, “Open Se Cura Project source code,” Git repositories,

2024, [file: sel4.xml]. [Online]. Available: https://opensecura.googlesource.

com/3p/sel4/sel4/+/d860c42ca870694e6d5ae208b0bf762093a5a014/libsel4/include/

interfaces/sel4.xml#53

[40] seL4 Foundation, “seL4 Tutorial: Capabilities,” 2024. [Online]. Available:

https://docs.sel4.systems/Tutorials/capabilities.html#cnodes-and-cslots

[41] Kent McLeod, personal communication, feb 2024.

[42] seL4 Foundation, “sel4test: documentation,” 2024. [Online]. Available: https:

//docs.sel4.systems/projects/sel4test/

[43] B. Zorn and D. Grunwald, “Evaluating models of memory allocation,” ACM Trans.

Model. Comput. Simul., vol. 4, no. 1, p. 107–131, jan 1994. [Online]. Available:

https://doi.org/10.1145/174619.174624

[44] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanović, “The RISC-V instruction

set manual, volume I: User-level ISA version 2.1,” Electrical Engineering and

Computer Sciences, University of California, Berkeley, Tech. Rep. EECS-2016-118,

May 2016. [Online]. Available: https://www2.eecs.berkeley.edu/Pubs/TechRpts/

2016/EECS-2016-118.pdf

66

https://www.sciencedirect.com/science/article/pii/S016412120600224X
https://www.sciencedirect.com/science/article/pii/S016412120600224X
https://github.com/seL4/rust-sel4
https://github.com/seL4/seL4
https://doi.org/10.1145/224056.224075
https://docs.rs/smallvec/latest/smallvec
https://opensecura.googlesource.com/3p/sel4/sel4/+/d860c42ca870694e6d5ae208b0bf762093a5a014/libsel4/include/interfaces/sel4.xml#53
https://opensecura.googlesource.com/3p/sel4/sel4/+/d860c42ca870694e6d5ae208b0bf762093a5a014/libsel4/include/interfaces/sel4.xml#53
https://opensecura.googlesource.com/3p/sel4/sel4/+/d860c42ca870694e6d5ae208b0bf762093a5a014/libsel4/include/interfaces/sel4.xml#53
https://docs.sel4.systems/Tutorials/capabilities.html#cnodes-and-cslots
https://docs.sel4.systems/projects/sel4test/
https://docs.sel4.systems/projects/sel4test/
https://doi.org/10.1145/174619.174624
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-118.pdf

Appendix A

Code of the Modified CantripOS

and seL4 System

A.1 Code for all repositories used in the project

Note, the below repositories are not anonymised and contain both the name and surname

of the author. All URLs are for the github.com service.

Modified CantripOS system with code for performance analysis, for the improved de-

sign (Section 3.3):

1. CantripOS: https://github.com/Willmish/cantrip/tree/willmish/performance eval O1 mod,

2. seL4: https://github.com/Willmish/seL4/tree/willmish/memory management O1 mod,

3. sim-tests (Renode and Robot Framework scripts for scheduling traces): Willmish/sim-

tests/tree/willmish/performance eval O1 mod,

4. sel4test harness:

Willmish/sel4test/tree/willmish/memory management,

5. capdl (Capability Distribution Language): Willmish/capdl/tree/willmish/memory management,

6. seL4 Libraries: Willmish/sel4 libs/tree/willmish/memory management.

Code for the first attempt of improved design, only the repositories which have large

changes (Section 3.2):

1. CantripOS: Willmish/cantrip/tree/willmish/memory management,

2. seL4: Willmish/seL4/tree/willmish/memory management.

Code for the performance evaluation of memory allocator logs, and miscellaneous:

1. Python scripts for evaluation: Willmish/cantrip memory allocators eval,

2. camkes-tool: Willmish/camkes-tool/tree/willmish/visualCAmkES bump python3.

67

https://github.com/Willmish/cantrip/tree/willmish/performance_eval_O1_mod
https://github.com/Willmish/seL4/tree/willmish/memory_management_O1_mod
https://github.com/Willmish/sim-tests/tree/willmish/performance_eval_O1_mod
https://github.com/Willmish/sim-tests/tree/willmish/performance_eval_O1_mod
https://github.com/Willmish/sel4test/tree/willmish/memory_management
https://github.com/Willmish/capdl/tree/willmish/memory_management
https://github.com/Willmish/sel4_libs/tree/willmish/memory_management
https://github.com/Willmish/cantrip/tree/willmish/memory_management
https://github.com/Willmish/seL4/tree/willmish/memory_management
https://github.com/Willmish/cantrip_memory_allocators_eval
https://github.com/Willmish/camkes-tool/tree/willmish/visualCAmkES_bump_python3

Appendix B

Memory System Redesign: Fix for

dirty untyped object splitting

B.1 Description and bugfix of the dirty untyped object split-

ting bug

When the total size of the system is below the halfway point of an untyped slab on which

it is being allocated, the original implementation splits the slab in half, and “fills up” the

smaller half with various sized untyped objects to minimise wastage, and allocates a large

slab for the remaining half, just like the Figure B.1 shows. However, if the system exceeds

the halfway point, the original system implementation did not take this into account and

gets stuck in an endless loop. Modifying the logic to distinguish when system components

are below or above the halfway point and only perform the “filling up” logic when beyond

the halfway point, as presented in the lower diagram in Figure B.1, resolves the issue.

CAmkES components

lost due to alignment
(can be 0)

new untyped

0 219 - 1
Slab splitting:

system size < 0.5 untyped
size

Slab splitting:
system size ≥ 0.5 untyped

size

new untypeds

halfway
point

CAmkES components

lost due to alignment
(can be 0)

new
untyped new untyped

0 219 - 1

Figure B.1: State of the slab containing the system components after splitting. Top figure
shows an example state when: size of components < 0.5 size of the slab. The bottom
figure shows an example state for the reverse inequality.

68

Appendix C

Memory System Redesign:

Neighbour Traversal Inefficiency

C.1 Empirical confirmation of neighbour traversal ineffi-

ciency

To verify whether the original attempt at system redesign actually introduces an additional

O(n) complexity during seL4_CNode_Delete invocation, I performed an experiment of

allocating 50 frame objects on a single untyped slab, and subsequently freed each one in

the order of allocation as well as in the reverse order, logging the length of neighbour

traversal in the Mapping Database linked list.

As expected, when freeing in the same order as allocation order, on each deallocation

there are initially 50 traversals, decreasing by 1 after each free, showing that indeed there

is a worst-case O(n) complexity introduced. Doing this in reverse, however, always results

in a traversal of length 1.

Introduced command for traversal in user space: 3b04aee and logging in seL4 kernel

4a52639. Logs of results:

1 Slab :[59, bits 20] available 843776 , max_size_bytes 1048576 ,

allocated_bytes: 204800 , allocated_objects: 50

2 Performed: 50 traversal steps during delete

3 Free ’d ObjDescBundle { cnode: 1, depth: 32, objs: [ObjDesc { type_:

seL4_RISCV_4K_Page , count: 1, cptr: 24 }] }

4 Performed: 49 traversal steps during delete

5 Free ’d ObjDescBundle { cnode: 1, depth: 32, objs: [ObjDesc { type_:

seL4_RISCV_4K_Page , count: 1, cptr: 25 }] }

6

69

https://github.com/Willmish/cantrip/commit/3b04aeef7332afc534effdaa7ed02fd1fd5ff326
https://github.com/Willmish/seL4/commit/4a526396320266a8e0c066b9de5f5e2df9232c02

Appendix D

Additional synthetic workload

results

D.1 Memory statistic for 32 and 64 percentage chance for

deallocation runs.

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Slab

0

100000

200000

300000

400000

500000

M
em

or
y

Memory slab status after 250 alloc/dealloc operations

16 17 18 19 20 21 22
0

4375

8750

13125

17500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Slab

0

100000

200000

300000

400000

500000

M
em

or
y

Memory slab status after 500 alloc/dealloc operations

16 17 18 19 20 21 22
0

4375

8750

13125

17500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Slab

0

100000

200000

300000

400000

500000

M
em

or
y

Memory slab status after 750 alloc/dealloc operations

16 17 18 19 20 21 22
0

4375

8750

13125

17500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Slab

0

100000

200000

300000

400000

500000

M
em

or
y

Memory slab status after 1000 alloc/dealloc operations

16 17 18 19 20 21 22
0

4375

8750

13125

17500

Best Fit - Available space

Next Fit - Available space

Best Fit - Used memory

Next Fit - Used memory

Best Fit - Alignment cons. fragmentation

Next Fit - Alignment cons. fragmentation

Best Fit - Watermarking cons. fragmentation

Next Fit - Watermarking cons. fragmentation

1
Figure D.1: Per-slab statistics for a random uniform run. Seed: 42, no. operations: 1000,
free chance: 32%.

71

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Slab

0

100000

200000

300000

400000

500000

M
em

or
y

Memory slab status after 250 alloc/dealloc operations

16 17 18 19 20 21 22
0

4375

8750

13125

17500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Slab

0

100000

200000

300000

400000

500000

M
em

or
y

Memory slab status after 500 alloc/dealloc operations

16 17 18 19 20 21 22
0

4375

8750

13125

17500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Slab

0

100000

200000

300000

400000

500000

M
em

or
y

Memory slab status after 750 alloc/dealloc operations

16 17 18 19 20 21 22
0

4375

8750

13125

17500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Slab

0

100000

200000

300000

400000

500000

M
em

or
y

Memory slab status after 1000 alloc/dealloc operations

16 17 18 19 20 21 22
0

4375

8750

13125

17500

Best Fit - Available space

Next Fit - Available space

Best Fit - Used memory

Next Fit - Used memory

Best Fit - Alignment cons. fragmentation

Next Fit - Alignment cons. fragmentation

Best Fit - Watermarking cons. fragmentation

Next Fit - Watermarking cons. fragmentation

1
Figure D.2: Per-slab statistics for a random uniform run. Seed: 42, no. operations: 1000,
free chance: 64%.

72

Appendix E

Project Plan

73

Project Plan
Project Title: Improving the Space Efficiency of the Memory Management System

of CantripOS

Candidate Number: FMVC9

MEng Computer Science

Supervisor: Prof. Brad Karp

Submission date: 19 November 2023∗

1 Aims and Objectives

The aims and objectives of the project are outlined below.

Aim: To learn more about the design of memory management systems by experimentally studying

the space and compute efficiency of the memory allocation and management system of CantripOS

and improving this system’s space efficiency. Because CantripOS uses Rust (a memory safe lan-

guage) and seL4 secure microkernel, this project will advance my understanding of using memory

safe languages for system implementation and secure microkernels.

Objectives:

1. CantripOS is an experimental operating system and targets hardware that is not available to

me, therefore a first step to work with this experimental system is to set up the development

environment.

2. Next step involves implementing support for bookkeeping in memory allocation. This experi-

mental OS has a rudimentary allocator system - it performs first fit allocation which is known

to not be space efficient. It also lacks bookkeeping information about allocated memory in

the application layer, which limits the performance of the memory allocator and the quality

of allocation.

(a) Memory management in CantripOS has 2 layers - an application layer (CantripOS)

through which apps make requests for memory allocation and seL4 microkernel to which

the requests are made to. To improve the current memory management, I need to extend

the interface between the user level memory allocator and the seL4 microkernel, so that

the user level allocator can have more knowledge of what memory is currently free or

allocated.

(b) Using the extended interface with seL4 microkernel, I will implement the user level

memory bookkeeping system.

∗This is a supervisor agreed revision on the original submission from 19.11.2023

74

3. Previously known efficient memory allocators include: best fit - which is known to minimise

memory waste but can be computationally expensive, as well as other variants of best fit

- which reduce computational cost but are more memory wasteful. Preferred goal is to

implement 2 such algorithms for CantripOS allocator, but depending on time restrictions I

might implement both or only one.

Aim: To evaluate and compare the old and new memory management methods based on the

metrics of: efficiency in memory utilisation (less memory wasted is better) and computational

overhead (less computation per allocation is better).

Objectives:

1. Identify and implement applications of synthetic workloads for worst and best cases of the

old and new memory allocation algorithms. These workloads would have human-engineered

patterns of allocation, replicating the spectrum of different memory allocation behaviours,

e.g. making many big allocations of large arrays, making many small allocations, doing a lot

of deallocations.

2. Identify and attempt porting a few applications that are representative of what users might

expect to run on the CantripOS system and the hardware it targets.

3. Perform experiments on the old and new memory allocation system using the applications

described above, measure their performance in terms of computational overhead of allocation

and freeing, and memory utilisation and fragmentation.

2 Expected Outcomes and Deliverables

This project aims to produce the following results (roughly in chronological order):

1. A Project Plan outlining the aims of the proposed project. (This document)

2. An Interim Report (By 19th January 2024), outlining the current progress of the project,

including what work is needed to complete the project, along with the time needed and

milestones for completion.

3. Source code of modified seL4 microkernel along with the CantripOS Operating System with

proper bookkeeping system of memory in CantripOS.

4. Source code for the memory allocator(s) for CantripOS, implementing an algorithm(s) with

expected improved efficiency of memory management.

5. Pseudo-code and source code for example CantripOS applications with synthetic workloads

for worst and best cases of the old and new memory allocation algorithms in terms of memory

waste and computational efficiency.

6. Identifying the applications representative of what users might expect to run on the Cantri-

pOS system and the hardware it targets.

7. Source code for any porting effort of the representative applications to the CantripOS plat-

form.

75

8. Source code for a script used for collecting benchmarking data from running applications,

and performing experiments using these applications - e.g. automatically executing the ap-

plications over UART and saving the data from UART output.

9. Results of the experiments and analysis of the memory management system using the previ-

ously written applications, measuring the computational overhead, memory utilisation and

fragmentation of memory allocation and freeing.

10. Extensions: enhancing the memory allocator to support debugging applications using deb-

buging memory allocator, implementing memory allocation algorithm using exponentially

sized bins, adding visual representation of allocated memory (for easier spotting of fragmen-

tation), upstreaming attempt of the source code.

11. Submitted Final Report by 4pm on 26th April 2024.

3 Work Plan

With both development and performance analysis playing a big role in the project’s final outcome

and success, the work plan is divided into two halves - first one being fairly focused on the software

development, and the second one on performance experiment planning, running and analysis.

• Project Start - End of October (4 weeks) : Exploration of project direction possibilities,

background reading, setting up the development environment for CantripOS and seL4.

• November - Mid December (6 weeks) : Getting in touch with Open Source project maintainer,

Setting up the development environment, following the suggested leads - extending the in-

terface between user level CantripOS and seL4 with memory allocation/freeing information,

implementing bookkeeping for memory management in CantripOS.

• Mid December - January (2 weeks) : Writing the report section for the code design and

development part. (At the same time as the code is being developed)

• Mid December - January (2 weeks) : Implementing the improved memory allocation system

in CantripOS (at least 1 algorithm).

• January - Mid January (2 weeks) : Identifying and implementing synthetic workload appli-

cations for CantripOS’s new and old memory system.

• Mid January - February (2 weeks) : Identifying and porting applications representative of

typical workloads on CantripOS.

• February - End of February (3 weeks) : Performing experiments on CantripOS and writing

preliminary analysis.

• End of February - End of March (4 weeks) : Finalising analysis, adding any extensions to

the memory allocation system, running additional experiments if applicable, upstreaming to

Open Source if successfully improved efficiency.

• End of March - Submission (4 weeks) : Finalising the Final Report and iterating with the

supervisor for final submission.

76

Appendix F

Interim Report

77

Project Interim Report
Project Title: Improving the Space Efficiency of the Memory Management System

of CantripOS

FMVC9

MEng Computer Science

Supervisor: Brad Karp

Submission date: 2 February 2024

1 Progress to Date

Majority of the work done up to this point was spent on improving understanding of the kernel

(seL4) along with, novel to me, safety mechanisms implemented in the kernel.

During the months of October and November I got the existing code base of the CantripOS

project and set up the emulation environment (as the target hardware for this system is not widely

available yet). I have spent some time trying to set up the emulation and build environment on a

laptop with a different CPU architecture (M1) which unfortunately turned out to not be feasible.

During December I worked through the majority of tutorials available in seL4 documentation

as well as explored the documentation introducing the concepts of Capabilities (pointers with

privilleges), Untypeds (how free memory is represented in seL4).

From January up to now I have traced (both in code and through execution) the memory

initialisation in seL4 and how free memory blocks are created and handed off to userspace. I

instrumented the kernel to track memory allocation.

I have explored how to use the GDB debugger for both the kernel and userspace and am

currently in the process of tracing how memory allocation is currently handled in CantripOS and

what information is kept about the free and used memory. Ideally after completing this stage I

will have an understanding of what information is needed from the kernel to improve the memory

management system, so I can design and implement an extension to kernel’s interface with the

userspace.

Learning curve on the design and implementation of both seL4 and CantripOS is higher than

anticipated, and although I was hoping to be developing the system modifications at this point in

time, I am still at a point where I am refining my understanding of the seL4 kernel and CantripOS

system. With my supervisor I will be speaking directly to the author of CantripOS to accelerate

the process of understanding CantripOS. Below is a revised plan which takes into account the high

learning curve of the project.

78

2 Remaining Work

The majority of the work that needs to be done, includes: improving understanding of current

memory management system in CantripOS, design and implement kernel-userspace interface mod-

ification, design and implement the improved userspace memory allocation system, prepare syn-

thetic workload applications and perform experiments on CantripOS and finally identify and port

applications representative of typical workloads on the system.

The revised timeline for the project is outlined below:

1. 24th Jan - 7th Feb (2 weeks): Building an understanding of the memory management system

in CantripOS by tracing its memory allocator. This is required to understand what is lacking

in the current book keeping of memory and how the interface with the kernel space (seL4)

needs to be modified to allow improving it.

2. 7th February - 16th Feb (1.5 weeks): Prototype/design on paper the required modification

of the kernel and userspace. Document progress up to date in the Final Report.

3. 16th Feb - 28 Feb (1.5 weeks): Implement and test kernel interface modification along with

the improved memory allocation system.

4. 28 Feb - 6 Mar (1 week): Design and implement synthetic workloads for CantripOS’s new

and old memory system.

5. 6 Mar - 13 Mar (1 week): Reach out to the CantripOS project group and identify applica-

tions representative of typical workloads on CantripOS. Port the application. Document the

modification to the memory system along with the implemented synthetic workloads in the

Final Report.

6. 13 Mar - 27 Mar (2 weeks): Performing experiments on CantripOS and writing preliminary

analysis in the Final Report. Ironing any potential bugs discovered in the memory allocator

implementation.

7. 27 Mar - 10 April (2 weeks): Finalising analysis in the Final Report, adding any extensions

to the memory allocation system, running additional experiments if applicable, upstreaming

to Open Source if successfully improved efficiency.

8. 10 April - Submission (2.5 weeks): Finalising the Final Report and iterating with the super-

visor for final submission.

79

	Introduction
	Improvement of Memory Management in CantripOS
	Evaluation of Memory Management in CantripOS
	Thesis Goals

	Background & Related Work
	Dynamic Storage Allocation
	Allocator Mechanisms
	Memory Fragmentation

	Physical Memory Fragmentation in seL4 and CantripOS
	Watermarking Constraint Fragmentation
	Alignment Constraint Fragmentation

	Background Information: Systems in Play
	CantripOS
	seL4

	Design and Implementation
	Original CantripOS Memory Management System
	Original CantripOS Memory Allocator
	Limitations of Memory Management in seL4/CantripOS

	Our Initial Design: Improving Memory Manager via MDB Traversal
	Goals
	What to Return From the Kernel to Improve Memory Bookkeeping?
	Kernel Modifications
	User Space Modifications

	Our Improved Design for the CantripOS Memory Manager
	Goals
	What to Return From the Kernel to Improve Memory Bookkeeping?
	Kernel Modifications
	User space Modifications
	Validation of the Designs' Correctness

	Implementing the Best-Fit Strategy for Memory Allocation
	Infrastructure for Performance Analysis

	Performance Evaluation
	Experiments
	Measured Metrics
	Synthetic Workloads
	Representative Workloads
	Expected Study Outcomes

	Results
	Synthetic Workloads – Random with Uniform Distribution
	Representative Workloads – Standalone Application Traces
	Representative Workloads – Sequential Application Trace Interleaving
	Allocation Latency Evaluation

	Conclusions & Future Work
	Conclusions
	Future Work

	Code of the Modified CantripOS and seL4 System
	Code for all repositories used in the project

	Memory System Redesign: Fix for dirty untyped object splitting
	Description and bugfix of the dirty untyped object splitting bug

	Memory System Redesign: Neighbour Traversal Inefficiency
	Empirical confirmation of neighbour traversal inefficiency

	Additional synthetic workload results
	Memory statistic for 32 and 64 percentage chance for deallocation runs.

	Project Plan
	Interim Report

